Log in

Compact Highly Directive MIMO Vivaldi Antenna for 5G Millimeter-Wave Base Station

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, a novel design for a 5G base station (BS) antenna is proposed. The proposed antenna consists of two orthogonally polarized antennas. The two antennas are modified compact Vivaldi antennas operating in the two recommended 5G operating bands; 28 and 38 GHz with measured impedance bandwidth of 26.5–40 GHz. The orthogonality of the two antennas allows the use of two antennas on the same substrate within one enclosure to serve two sectors separately. So, instead of using two enclosures to serve two sectors, only one enclosure is required. The two elements may be part of two separate MIMO distributions. To minimize the isolation between the MIMO antennas elements with low complexity and low cost, the antenna elements have been distributed along the z-direction with half-wavelength spacing between elements including Electromagnetic band-gap (EBG) structure in between them. The simulation results have been shown that the measured mutual coupling between the array elements is improved from − 32 to − 45 dB at 28 GHz and from − 22 to − 59 at 38 GHz. The envelope correlation coefficient (ECC) is enhanced and the diversity gain (DG) is improved simultaneously. The suggested structure has been designed on CST Microwave Studio 2019. The two orthogonal antennas’ overall size approaches 34 mm × 55.8 mm × 0.203 mm3. The measured gain of the suggested design is enhanced from 10.4 to 12.8 dB at 28 GHz whereas a minor change is noticed at 38 GHz. The maximum simulated radiation efficiency approaches 96%. The antenna is fabricated and tested where good experimental results are noticed compared to the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Z. Wu, B. Wu, Z. Su and X. Zhang, 2018 International Workshop on Antenna Technology (iWAT), Nan**g, 2018 https://doi.org/10.1109/IWAT.2018.8379163

  2. D.J.Zhang, IMT-2020(5G) Summit, (2017).

  3. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed and E. Limiti, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019, pp. 1-2, https://doi.org/10.1109/IRMMW-THz.2019.8874127.

  4. W. Hong, Z. H. Jiang, C. Yu, J. Zhou, P. Chen, Z Yu, H. Zhang, and B Yang, IEEE Transactions on Antennas and Propagation, 65(12), 6231(2017).

  5. S. Zhu, H. Liu, P. Wen, and Z. Chen, IEEE Antennas Wireless Propag. Lett. , 17(5), 776 (2018).

  6. Y. Liu, W. Zhou, S. Yang, W. Li, P.Li, and S. Yang, IEEE Antennas Wireless Propag. Lett. , 1536 (2015).

  7. E. W. Reid , L. Ortiz-Balbuena , A. Ghadiri and K. Moez, IEEE Trans. Antennas Propag, 61(1), 241 (2012).

    Google Scholar 

  8. J. Wu, Z. Zhao, Z. Nie, and Q. Liu, IEEE Antennas Wireless Propag. Lett, 13(1), 698 (2014).

    Article  Google Scholar 

  9. R. Sturdivant, and E. K.P. Chong, 2017 IEEE Radio and Wireless Symposium (RWS), (2017), pp.197-200. https://doi.org/10.1109/RWS.2017.7885986

  10. P.J. Gibson, Proc. of the 9th European Microwave Conference, (1979), pp.101–105. https://doi.org/10.1109/EUMA.1979.332681

  11. E. Gazit. IEE Proc., no.135 (2), 89 (1988).

  12. J.D.S. Langley, P.S. Hall, and P. Newham, IEE Proc. Microw. Antennas Propag. , (143), 97 (1996).

  13. J. Bai, S. Shi, and D. W. Prather, IEEE trans. on microwave theory and techniques, 59(4), (2011).

  14. M. Alibakhshikenari, B. S. Virdee, IEEE Access, vol. 7, pp. 5182-51840, April 29, 2019.

  15. M. Alibakhshikenari, B. S. Virdee, IEEE Access, vol. 7, Page(s): 23606 - 23614, March 5, 2019.

  16. I. Nadeem and D.-U. Choi, IEEE Access, 7, 563(2019).

    Article  Google Scholar 

  17. M. S. Khan, A. D. Capobianco, A. Iftikhar, R. M. Shubair, D. E. Anagnostou, and B. D. Braaten, IET Microw, Antennas Propag., 11( 7), 997(2017).

  18. S. Koziel, A. Bekasiewicz, and Q. S. Cheng, IET Microw., Antennas Propag., 11(8), 1162 (2017).

  19. X. Zhao, S. P. Yeo, and L. C. Ong IEEE Trans. Antennas Propag., 66(1), 420 (2018).

  20. H.-X. Xu, G.-M. Wang, and M.-Q. Qi, IEEE Trans. Magn., 49(4), 1526 (2013).

  21. J.-Y. Lee, S.-H. Kim, and J.-H. Jang, IEEE Trans. Antennas Propag., 63(9), 4194 (2015).

  22. H. Y. Qi, L. L. Liu, X. X. Yin, H. X. Zhao, and W. J. Kulesza, IEEE Antennas Wirel. Propag. Lett 15, 191(2016).

  23. Z. Briqech, A.-R. Sebak, and Tayeb A. Denidni, IEEE Trans. Antennas Propag., 65(12), 6403(2017).

  24. S. Sharma, Mainuddin, B. K. Kanaujia, M. K. Khandelwal, Microsyst Technol., (2019). https://doi.org/10.1007/s00542-019-04574-1, 2019

  25. A. Kumar, C.S. Rai, K. Elwal MK, BK. Kanaujia, Microsyst Technol., 2019. https://doi.org/10.1007/s00542-019-04513-0

  26. Z. Li, C. Yin , and X. Zhu, IEEE Access , 7 , 38696 (2019).

    Article  Google Scholar 

  27. D. H. Li, F. Zhang, L. Cao, and Y. Zhao, Progress In Electromagnetics Research Letters, 86, 97( 2019).

    Article  Google Scholar 

  28. R. Natarajan, M. G. Alsath, M. Kanagasabai, S, Bilvam, and Sh. Meiyalagan, Int J RF Microw Comput Aided Eng. 2019 https://doi.org/10.1002/mmce.21989

  29. Haythem H. Abdullah, AA Megahed, M.EA Abo-Elsoud, IET Microwaves, Antennas & Propagation, 13( 9), 345(2019).

  30. K. R. Jha and S. K. Sharma, IEEE Antennas Propag. Mag., 60(1), 118 (2018)

  31. K.S. Sultan, H.H. Abdullah, E. A. Abdallah and H. S. El-Hennawy , IEEE Access , 8, 37250 ( 2020)

    Article  Google Scholar 

  32. L. Malviya, R. K. Panigrahi, M. V. Kartikeyan, Micro. Optical and Comm. Eng. (ICMOCE), 61, 91 ( 2016).

  33. K. S. Sultan and H. H. Abdullah, Progress in electromagnetics Research C, 93, 119(2019).

  34. M. Manteghi, and R.Samii, "EEE Trans Antennas Propag, 53(1), 466 (2005).

  35. SH. Chae, S. Oh, S-O. , IEEE Antennas Wirel Propag Lett, 6, 122 (2007).

  36. A. Mahmoud, and A.A.Ibrahim, IEEE Antennas Wirel Propag Lett, 12(5), 1452 (2013).

  37. M. Abdullah, S. H. Kiani, L. F. Abdulrazak , A. Iqbal, M. A. Bashir , Sh. Khan and S. Kim, Electronics, 8, 1090 (2019)

    Article  Google Scholar 

  38. R. Herzi, H. Zairi, A. Gharsallah , 16th international conference on Sciences and Techniques of Automatic control & computer engineering - STA' 2015, Monastir, Tunisia, Dec. (2015), pp. 21-23. https://doi.org/10.1109/STA.2015.7505195

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haythem H. Abdullah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elabd, R.H., Abdullah, H.H. & Abdelazim, M. Compact Highly Directive MIMO Vivaldi Antenna for 5G Millimeter-Wave Base Station. J Infrared Milli Terahz Waves 42, 173–194 (2021). https://doi.org/10.1007/s10762-020-00765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00765-4

Keywords

Navigation