Log in

Spatial and temporal patterns of carbon flow in a temperate, large river food web

  • WORLD’S LARGE RIVERS CONFERENCE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Using natural abundances of stable carbon (δ13C) and nitrogen (δ15N) isotopes, we quantified spatial and temporal patterns of carbon flow through the main channel food web in the lowland section of New Zealand’s longest river, the Waikato River. The study was undertaken with the objective of determining whether the Waikato River conforms to contemporary theoretical concepts regarding carbon flow in large river food webs. Potential organic carbon sources and invertebrate and fish consumers were sampled from three different hydrogeomorphic zones on six occasions, representing a range of seasonal and flow conditions. In line with the predictions of the riverine productivity model and riverine ecosystem synthesis, autochthonous algae and biofilms were the most important basal carbon source contributing to consumer biomass. These were often supported by C3 aquatic macrophytes and allochthonous C3 riparian plants. The relative importance of organic carbon sources differed between zones and appeared to change depending on season, presumably in response to water temperature and flow, particularly in the unconstrained zone of the lower river. We also demonstrate that to draw robust conclusions, consideration must be given to quantifying the isotopic signatures of organisms lower in the food web, as these can change significantly between sampling times and hydrogeomorphic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Article  Google Scholar 

  • Anderson, C. & G. Cabana, 2005. Delta N-15 in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.

    Article  CAS  Google Scholar 

  • Angradi, T. R., 1994. Trophic linkages in the lower Colorado River − multiple stable-isotope evidence. Journal of the North American Benthological Society 13: 479–495.

    Article  Google Scholar 

  • Arrington, D. A., B. K. Davidson, K. O. Winemiller & C. A. Layman, 2006. Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species. Journal of Fish Biology 68: 1347–1361.

    Article  CAS  Google Scholar 

  • Baxter, C. V., K. D. Fausch & W. Carl Saunders, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201–220.

    Article  Google Scholar 

  • Benstead, J. P., J. G. March, B. Fry, K. C. Ewel & C. M. Pringle, 2006. Testing isosource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87: 326–333.

    Article  PubMed  Google Scholar 

  • Boon, P. I. & S. E. Bunn, 1994. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquatic Botany 48: 99–108.

    Article  Google Scholar 

  • Broekhuizen, N., S. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.

    Article  Google Scholar 

  • Brown, E. J., 2003. Hydraulic Travel Time of Major Waikato Rivers. Environment Waikato Technical Report 2003/02, Environment Waikato, Hamilton.

  • Brown, E. J., 2010. Flow regime and water use. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 29–46.

    Google Scholar 

  • Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48: 619–635.

    Article  Google Scholar 

  • Burford, M. A., A. J. Cook, C. S. Fellows, S. R. Balcombe & S. E. Bunn, 2008. Sources of carbon fuelling production in an arid floodplain river. Marine & Freshwater Research 59: 224–234.

    Article  CAS  Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844–10847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carabel, S., E. Godinez-Dominguez, P. Verisimo, L. Fernandez & J. Freire, 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology 336: 254–261.

    Article  CAS  Google Scholar 

  • Champion, P. D. & J. S. Clayton, 2010a. Box 14.1: Riparian vegetation. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 268 pp.

  • Champion, P. D. & J. S. Clayton, 2010b. Native macrophytes and aquatic weeds. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 153−172.

  • Chang, C. C. Y., C. Kendall, S. R. Silva, W. A. Battaglin & D. H. Campbell, 2002. Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Canadian Journal of Fisheries and Aquatic Sciences 59: 1874–1885.

    Article  CAS  Google Scholar 

  • Chapman, M. A., 1996. Human impacts on the Waikato river system, New Zealand. GeoJournal 40: 85–99.

    Article  Google Scholar 

  • Chapman, M. A., M. H. Lewis & M. J. Winterbourn, 2011. Guide to the Freshwater Crustacea of New Zealand. New Zealand Freshwater Sciences Society, Christchurch.

    Google Scholar 

  • Cloe, W. III & G. Garman, 1996. The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshwater Biology 36: 104–114.

    Article  Google Scholar 

  • Collier, K. J. & A. Lill, 2008. Spatial patterns in the composition of shallow-water macroinvertebrate communities of a large New Zealand river. New Zealand Journal of Marine and Freshwater Research 42: 129–141.

    Article  Google Scholar 

  • Collier, K. J. & I. D. Hogg, 2010. Macroinvertebrates. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 175–192.

    Google Scholar 

  • Collier, K. J., E. M. Watene-Rawiri & J. D. McCraw, 2010. Geography and history. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 1−12.

  • Collier, K. J., M. P. Hamer & M. W. Davenport, 2011. Artificial substrate monitoring of macroinvertebrates in the Waikato River: 25 years on. Waikato Regional Council Technical Report 2011/25. Waikato Regional Council, Hamilton.

  • David, B. O. & D. A. Speirs, 2010. Native fish. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 193−208.

  • del Giorgio, P. A. & R. L. France, 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnology 41: 359–365.

    Google Scholar 

  • de Ruiter, P. C., V. Wolters & J. C. Moore, 2005. Dynamic Food Webs. In de Ruiter, P. C., V. Wolters & J. C. Moore (eds), Dynamic Foodwebs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Academic Press, San Diego: 3−9.

  • Delong, M. D., 2010. Food webs and the Upper Mississippi River: contributions to our understanding of ecosystem function in large rivers. Hydrobiologia 640: 89–101.

    Article  Google Scholar 

  • Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    Article  PubMed  Google Scholar 

  • Delong, M. D., J. H. Thorp, K. S. Greenwood & M. C. Miller, 2001. Responses of consumers and food resources to a high magnitude, unpredicted flood in the upper Mississippi River basin. Regulated Rivers: Research & Management 17: 217–234.

    Article  Google Scholar 

  • Doi, H., K. H. Chang, T. Ando, H. Imai, S. Nakano, A. Kajimoto & I. Katano, 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 156: 363–371.

    Article  PubMed  Google Scholar 

  • Doucett, R. R., D. R. Barton, K. R. A. Guiguer, G. Power & R. J. Drimmie, 1996. Comment: critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 53: 1913–1915.

    Article  Google Scholar 

  • Douglas, M. M., S. E. Bunn & P. M. Davies, 2005. River and wetland food webs in Australia’s wet-dry tropics: general principles and implications for management. Marine & Freshwater Research 56: 329–342.

    Article  Google Scholar 

  • Dynesius, M. & C. Nilsson, 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266: 753–762.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • Finlay, J. C., M. E. Power & G. Cabana, 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography 44: 1198–1203.

    Article  Google Scholar 

  • Finlay, J. C., S. Khandwala & M. E. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.

    Article  Google Scholar 

  • Fitzgerald, J. M., 1996. Carbon-13 and Oxygen-18 Isotope Geochemistry of the Waikato River. University of Waikato, Hamilton.

    Google Scholar 

  • Folch, J., M. Lees, G. Sloane-Stanley, et al., 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497–509.

    CAS  PubMed  Google Scholar 

  • France, R., 1995a. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series Oldendorf 124: 307–312.

    Article  Google Scholar 

  • France, R., 1995b. Stable nitrogen isotopes in fish: literature synthesis on the influence of ecotonal coupling. Estuarine, Coastal and Shelf Science 41: 737–742.

    Article  CAS  Google Scholar 

  • France, R. L., 1997. Stable carbon and nitrogen isotopic evidence for ecotonal coupling between boreal forests and fishes. Ecology of Freshwater Fish 6: 78–83.

    Article  Google Scholar 

  • Fry, B. & E. B. Sherr, 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In Rundel, P. W., J. R. Ehleringer & K. A. Nagy (eds), Stable Isotopes in Ecological Research. Ecological Studies. Springer-Verlag, New York: 196–229.

    Chapter  Google Scholar 

  • Hadwen, W. L., M. Spears & M. J. Kennard, 2010a. Temporal variability of benthic algal δ13C signatures influences assessments of carbon flows in stream food webs. Hydrobiologia 651: 239–251.

    Article  CAS  Google Scholar 

  • Hadwen, W. L., C. S. Fellows, D. P. Westhorpe, G. N. Rees, S. M. Mitrovic, B. Taylor, D. S. Baldwin, E. Silvester & R. Croome, 2010b. Longitudinal trends in river functioning: patterns of nutrient and carbon processing in three Australian rivers. River Research and Applications 26: 1129–1152.

    Article  Google Scholar 

  • Hamilton, D. P. & I. C. Duggan, 2010. Plankton. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 117−131.

  • Hamilton, S. K., J. L. Tank, D. F. Raikow, E. R. Siler, N. J. Dorn & N. E. Leonard, 2004. The role of instream vs allochthonous N in stream food webs: modeling the results of an isotope addition experiment. Journal of the North American Benthological Society 23: 429–448.

    Article  Google Scholar 

  • Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495–508.

    Article  CAS  Google Scholar 

  • Hicks, B. J., 1997. Food webs in forest and pasture streams in the Waikato region, New Zealand: a study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zealand Journal of Marine and Freshwater Research 31: 651–664.

    Article  Google Scholar 

  • Hicks, D. M. & R. B. Hill, 2010. Sediment regime: sources, transport and changes in the riverbed. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 71–92.

    Google Scholar 

  • Hicks, B. J., N. Ling, M. W. Osborne, D. G. Bell & A. Ring, 2005. Boat Electrofishing Survey of the Lower Waikato River and Its Tributaries. CBER Contract Report No. 39, University of Waikato, Hamilton.

  • Hicks, B. J., N. Ling & B. J. Wilson, 2010. Introduced fish. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), The Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 209−228.

  • Hladyz, S., D. L. Nielsen, P. J. Suter & E. S. Krull, 2012. Temporal variations in organic carbon utilization by consumers in a lowland river. River Research and Applications 28: 513–528.

    Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2007. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10: 1019–1033.

    Article  Google Scholar 

  • Hunt, R. J., T. D. Jardine, S. K. Hamilton & S. E. Bunn, 2011. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology. doi:10.1111/j.1365-2427.2011.02708.x.

  • Jardine, T., B. Pusey, S. Hamilton, N. Pettit, P. Davies, M. Douglas, V. Sinnamon, I. Halliday & S. Bunn, 2011. Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168(3): 829–838.

    Article  PubMed  Google Scholar 

  • Jellyman, D. J., 1989. Diet of two species of freshwater eel (Anguilla spp.) in Lake Pounui, New Zealand. New Zealand Journal of Marine and Freshwater Research 23: 1–10.

    Article  Google Scholar 

  • Jepsen, D. B. & K. O. Winemiller, 2007. Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology of Freshwater Fish 16: 267–281.

    Article  Google Scholar 

  • Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141.

    Article  Google Scholar 

  • Junk, W. J. & K. M. Wantzen, 2004. The flood pulse concept: new aspects, approaches and applications − an update. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific.

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed) Proceedings of the International Large River Symposium, Vol. 106. Canadian Special Publication of Fisheries and Aquatic Sciences: 110−127.

  • Kohl, D. H. & G. Shearer, 1980. Isotopic fractionation associated with symbiotic N2 fixation and uptake of NO3− by plants. Plant Physiology 66: 51–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Layman, C. A., K. O. Winemiller & D. A. Arrington, 2005. Describing a species-rich river food web using stable isotopes, stomach contents, and functional experiments. In de Ruiter, P., V. Wolters & J. C. Moore (eds), Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change. Academic Press, San Diego: 395−406.

  • Leigh, C., F. Sheldon, R. T. Kingsford & A. H. Arthington, 2010a. Sequential floods drive ‘booms’ and wetland persistence in dryland rivers: a synthesis. Marine & Freshwater Research 61: 896–908.

    Article  CAS  Google Scholar 

  • Leigh, C., M. A. Burford, F. Sheldon & S. E. Bunn, 2010b. Dynamic stability in dry season food webs within tropical floodplain rivers. Marine & Freshwater Research 61: 357–368.

    Article  CAS  Google Scholar 

  • Marcarelli, A., C. Baxter & M. Mineau, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.

    Article  PubMed  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • McCutchan J. H. Jr., & W. M. Lewis Jr., 2002. Seasonal variation in stable isotope ratios of stream algae. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 27: 3304–3307.

    Google Scholar 

  • McDowall, R. M., 1990. New Zealand Freshwater Fishes: A Natural History and Guide. Heinemann Reed, Auckland.

    Google Scholar 

  • McDowall, R. M., 2000. The Reed Field Guide to Fishes of New Zealand. Reed Books, Auckland.

    Google Scholar 

  • McDowall, R. M., M. R. Main, D. W. West & G. L. Lyon, 1996. Terrestrial and benthic foods in the diet of the shortjawed kokopu, Galaxias postvectis Clarke (Teleostei: Galaxiidae). New Zealand Journal of Marine and Freshwater Research 30: 257–269.

    Article  Google Scholar 

  • McIntyre, P. B. & A. S. Flecker, 2006. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148: 12–21.

    Article  PubMed  Google Scholar 

  • Medeiros, E. S. F. & A. H. Arthington, 2010. Allochthonous and autochthonous carbon sources for fish in floodplain lagoons of an Australian dryland river. Environmental Biology of Fishes 90: 1–17.

    Article  Google Scholar 

  • Mulholland, W. M., 2010. Box 2.2: history of the lower Waikato Flood Protection Scheme. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 16.

    Google Scholar 

  • Nichols, S. N., 1996. Studies on the freshwater shrimp Paratya curvirostris (Heller, 1862) in the Waikato River. University of Waikato, Hamilton.

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Perga, M. E. & D. Gerdeaux, 2005. ‘Are fish what they eat’ all year round? Oecologia 144: 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: co** with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Phillips, D. L., S. D. Newsome & J. W. Gregg, 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144: 520–527.

    Article  PubMed  Google Scholar 

  • **ram, M. A., K. J. Collier, D. P. Hamilton, B. O. David & B. J. Hicks, 2012. Carbon sources supporting large river food webs: a review of ecological theories and evidence from stable isotopes. Freshwater Reviews (in press).

  • Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissue: implication for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analysis. Oecologia 152: 179–189.

    Article  PubMed  Google Scholar 

  • Post, J. R. & E. A. Parkinson, 2001. Energy allocation strategy in young fish: allometry and survival. Ecology 82: 1040.

    Article  Google Scholar 

  • Power, M. E. & W. E. Dietrich, 2002. Food webs in river networks. Ecological Research 17: 451–471.

    Article  Google Scholar 

  • Reid, M. A., M. D. Delong & M. C. Thoms, 2011. The influence of hydrological connectivity on food web structure in floodplain lakes. River Research and Applications. doi:10.1002/rra.1491.

    Google Scholar 

  • Roach, K. A., J. H. Thorp & M. D. Delong, 2009a. Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River. Freshwater Biology 54: 607–620.

    Article  Google Scholar 

  • Roach, K. A., K. O. Winemiller, C. A. Layman & S. C. Zeug, 2009b. Consistent trophic patterns among fishes in lagoon and channel habitats of a tropical floodplain river: evidence from stable isotopes. Acta Oecologica: International Journal of Ecology 35: 513–522.

    Article  Google Scholar 

  • Rounick, J. S. & M. R. James, 1984. Goethermal and cold springs faunas: inorganic carbon sources affect isotope values. Limnology and Oceanography 29: 386–389.

    Article  Google Scholar 

  • Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The “inshore retention concept””and its significance for large rivers. Large Rivers 12: 509–516.

    Google Scholar 

  • Sedell, J. R., J. E. Richey & F. J. Swanson, 1989. The river continuum concept: a basis for the expected ecosystem behaviour of very large rivers? In: Dodge, D. P. (ed) Proceedings of the International Large River Symposium, Vol. 106. Canadian Special Publication of Fisheries and Aquatic Sciences: 49−55.

  • Speirs, D. A., D. G. Allen, R. M. Kelleher, M. D. Lake, A. N. Marchant, K. A. Mayes, E. M. Watene-Rawiri & B. J. Wilson, 2010. River management. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 13–26.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2008. The Riverine Ecosystem Synthesis: Towards Conceptual Cohesiveness in River Science. Elsevier, Amsterdam.

  • Thorp, J. H., M. D. Delong, K. S. Greenwood & A. F. Casper, 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117: 551–563.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vant, W. N., 2010. Water quality. In Collier, K. J., D. P. Hamilton, W. N. Vant & C. Howard-Williams (eds), Waters of the Waikato: Ecology of New Zealand’s Longest River. Waikato Regional Council, Hamilton: 93–114.

    Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467:555−561.

  • Wantzen, K. M., F. D. Machado, M. Voss, H. Boriss & W. J. Junk, 2002. Seasonal isotopic shifts in fish of the Pantanal wetland, Brazil. Aquatic Sciences 64: 239–251.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial dicontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Scientific Publishers, Ann Arbor, MI: 29–42.

    Google Scholar 

  • Weidel, B. C., S. R. Carpenter, J. F. Kitchell & M. J. Vander Zanden, 2011. Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences 68: 387–399.

    Article  CAS  Google Scholar 

  • Wells, R. D. S., 1984. The food of the grey mullet (Mugil cephalus L.) in Lake Waahi and the Waikato River at Huntly. New Zealand Journal of Marine and Freshwater Research 18: 13–19.

    Article  Google Scholar 

  • West, D. W., 2007. Responses of Wild Freshwater Fish to Anthropogenic Stressors in the Waikato River of New Zealand. University of Waikato, Hamilton.

    Google Scholar 

  • Winemiller, K. O., A. S. Flecker & D. J. Hoeinghaus, 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of North American Benthological Society 29: 84–99.

    Article  Google Scholar 

  • Winemiller, K. O., D. J. Hoeinghaus, A. A. Pease, P. C. Esselman, R. L. Honeycutt, D. Gbanaador, E. Carrera & J. Payne, 2011. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Research and Applications 803: 791–803.

    Article  Google Scholar 

  • Winterbourn, M. J., 2000. Feeding ecology. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Hamilton: 100–156.

    Google Scholar 

  • Wipfli, M. S. & C. V. Baxter, 2010. Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds. Fisheries 35: 373–387.

    Article  Google Scholar 

  • Woodward, G. & A. G. Hildrew, 2002. Food web structure in riverine landscapes. Freshwater Biology 47: 777–798.

    Article  Google Scholar 

  • Zeug, S. C. & K. O. Winemiller, 2008. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89: 1733–1743.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding provided by the University of Waikato Strategic Investment Fund and the Waikato Regional Council for the costs of sample collection and analysis, Warrick Powrie and Dudley Bell for driving boats and proving adept at collecting fish and invertebrates, Anjana Rajendram and Judy Hoult for help preparing and performing the stable isotope analyses, and the University of Waikato for providing a doctoral student scholarship. We thank three anonymous reviewers who provided comments that helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. **ram.

Additional information

Guest editors: H. Habersack, S. Muhar & H. Waidbacher / Impact of human activities on biodiversity of large rivers

Rights and permissions

Reprints and permissions

About this article

Cite this article

**ram, M.A., Collier, K.J., Hamilton, D.P. et al. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729, 107–131 (2014). https://doi.org/10.1007/s10750-012-1408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1408-2

Keywords

Navigation