Log in

Food webs and the Upper Mississippi River: contributions to our understanding of ecosystem function in large rivers

  • UPPER MISSISSIPPI RIVER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Studies on the Upper Mississippi River, particularly over the last 15 years, have contributed to our understanding of trophic processes in large rivers. The framework established by earlier population-specific studies, however, cannot be overlooked. Examination of the feeding habits of fish ranging from planktivores to piscivores gave the first indication that trophic processes were influenced by the spatial complexity and annual hydrological patterns of river-floodplain ecosystems. Experimental studies, which have often been considered impossible or impractical in large rivers, demonstrated the potential for biotic controls of system dynamics through predator–prey and competitive interactions. Such studies have been particularly helpful in understanding the potential impact of non-native species, including zebra mussels and Asian carp, to biodiversity and secondary production. Our understanding of riverine ecosystem function expanded greatly as food web studies began the application of a new tool—natural stable isotopes. Studies employing stable isotopes illustrated how food webs in a number of large rivers throughout the world are supported by the autochthonous production of microalgae. This study, coupled with other studies testing the prevailing models of riverine ecosystem function, has brought us to a point of better understanding the nature of river ecosystem functions. It is through looking back at the earlier studies of fish diet that we should realize that the temporal and spatial complexities of river ecosystem function must still be addressed more fully. This and a better grasp of the significance of the arrangement of patches within the riverine landscape will prove beneficial, as we assess the appropriate scale of river rehabilitation with an eye on how rehabilitation promotes productivity within complex ecosystems, including the Upper Mississippi River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartsch, L. A., W. B. Richardson & M. B. Sandheinrich, 2003. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales pormelas) in turbulent systems: a bioenergetics approach. Hydrobiologia 495: 59–72.

    Article  Google Scholar 

  • Bartsch, M. R., L. A. Bartsch & S. Gutreuter, 2005. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river. Journal of the North American Benthological Society 24: 168–177.

    Article  Google Scholar 

  • Bayley, P. B., 1989. Aquatic environments in the Amazon Basin, with an analysis of carbon sources, fish production, and yield. In Dodge, D. (ed.), International Large River Symposium. Canadian Special Publication for Fisheries and Aquatic Science 106: 399–408.

  • Brinson, M. M., H. D. Bradshaw & R. N. Holmes, 1983. Significance of floodplain sediments in nutrient exchange between a stream and its floodplain. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Michigan: 199–222.

    Google Scholar 

  • Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48: 619–635.

    Article  Google Scholar 

  • Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.

    Google Scholar 

  • Delong, M. D., 2005. Upper Mississippi River basin. In Benke, A. C. & C. E. Cushing (eds), Rivers of North America. Academic Press/Elsevier, New York: 327–373.

    Google Scholar 

  • Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    Article  PubMed  Google Scholar 

  • Delong, M. D., J. H. Thorp, K. S. Greenwood & M. C. Miller, 2001. Responses of consumers and food resources to a high magnitude, unpredicted flood in the upper Mississippi River basin. Regulated Rivers: Research and Management 17: 217–232.

    Article  Google Scholar 

  • Dent, C. L., G. S. Cumming & S. R. Carpenter, 2002. Multiple states in river and lake ecosystems. Philosophical Transactions of the Royal Society of London 357: 635–645.

    Article  PubMed  Google Scholar 

  • Dettmers, J. M., D. H. Wahl, D. A. Soluk & S. Gutreuter, 2001. Life in the fast lane: fish and foodweb structure in the main channel of large rivers. Journal of the North American Benthological Society 20: 255–265.

    Article  Google Scholar 

  • Dewey, M. R., W. B. Richardson & S. J. Ziegler, 1997. Patterns of foraging and distribution of bluegill sunfish in a Mississippi River backwater: influence of macrophytes and predation. Ecology of Freshwater Fish 6: 8–15.

    Article  Google Scholar 

  • Ellis, M. M., 1931. A survey of conditions affecting fisheries in the Upper Mississippi River. U.S. Department of Commerce Bureau of Fisheries, Fishery Circular No. 5, Government Printing Office, Washington, DC.

  • Galat, D. L. & I. Zweimüller, 2001. Conserving large-river fishes: is the highway analogy an appropriate paradigm. Journal of the North American Benthological Society 20: 266–279.

    Article  Google Scholar 

  • Galstoff, P. S., 1924. Limnological observations in the Upper Mississippi. U.S. Bureau of Fisheries Annual Report, Government Printing Office, Washington, DC.

  • Garvey, J., B. Ickes & S. Zigler, 2010. Challenges in merging fisheries research and management: the Upper Mississippi River experience. Hydrobiologia. doi: 10.1007/s10750-009-0061-x

  • Grubaugh, J. W. & R. V. Anderson, 1989. Upper Mississippi River: seasonal and floodplain forest influences on organic matter transport. Hydrobiologia 174: 235–244.

    Article  CAS  Google Scholar 

  • Gutreuter, S., 2004. Challenging the assumption of habitat limitation: an example from centrarchid fishes over an intermediate spatial scale. River Research and Applications 20: 413–425.

    Article  Google Scholar 

  • Hamilton, S. K., W. M. Lewis Jr. & S. J. Sippel, 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.

    Google Scholar 

  • Hein, T., C. Baranyi, G. J. Herndl, W. Wanek & F. Schiemer, 2003. Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biology 48: 220–232.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2007. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10: 1019–1033.

    Article  Google Scholar 

  • Houser, J. N. & W. B. Richardson, 2010. Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia. doi:10.1007/s10750-009-0067-4

  • Irons, K. S., G. G. Sass, M. A. McClelland & J. D. Stafford, 2007. Reduced condition factor of two native species coincident with invasion of non-native Asian carps in the Illinois River, U.S.A. Is this evidence for competition and reduced fitness. Journal of Fish Biology 71(Supplement D): 258–273.

    Google Scholar 

  • Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology: how rivers function and how human activities influence river process. BioScience 45: 134–141.

    Article  Google Scholar 

  • Jude, D. J., 1973. Food and feeding habits of gizzard shad in Pool 19, Mississippi River. Transactions of the American Fisheries Society 102: 378–383.

    Article  Google Scholar 

  • Junk, W. J., 1984. Ecology of the várvea floodplain of Amazonian whitewater rivers. In Sioli, H. (ed.), The Amazon, Vol. 56. Junk, Dordrecht: 215–244.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain ecosystems. In: Dodge, D. P. (ed.), Proceedings of the International Large River Symposium, Canadian Special Publication in Fisheries and Aquatic Science 106: 110–127.

  • Layman, C. A., D. A. Arrington, C. G. Montoya & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.

    Article  PubMed  Google Scholar 

  • Lewis W. M. Jr., S. K. Hamiliton, M. A. Rodríguez, J. F. Saunders III & M. A. Lasi, 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. Journal of the North American Benthological Society 20: 241–254.

    Article  Google Scholar 

  • Moore, M., S. P. Romano & T. Cook, 2010. Synthesis of Upper Mississippi River System submersed and emergent aquatic vegetation: past, present, and future. Hydrobiologia. doi:10.1007/s10750-009-0062-9

  • Mulholland, P. J., 1981. Deposition of riverborne organic carbon in floodplain wetlands and deltas. In Carbon Dioxide Effects Research and Assessment Flux of Organic Carbon in Rivers to the Ocean, CONF-8009140. US Department of Energy, Washington, DC: 142–172.

  • Pahl, G. & T. Varchmin, 1968. A seasonal study of the food habits of three game fish in Pool 6 of the Upper Mississippi River. Proceedings of the Mississippi River Research Consortium 2: 18.

    Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: co** with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116: 775–782.

    Article  Google Scholar 

  • Ranthum, R. C., 1969. Distribution and food habits of several species of fish in Pool 19, Mississippi River. M.S. Thesis, Iowa State University, Ames.

  • Richardson, W. B. & L. A. Bartsch, 1997. Effects of zebra mussel on foodwebs: interactions with juvenile bluegill and water residence time. Hydrobiologia 354: 141–150.

    Article  Google Scholar 

  • Roach, K. A., J. H. Thorp & M. D. Delong, 2008. Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River. Freshwater Biology 54: 607–620.

    Article  Google Scholar 

  • Romano, S. P., 2010. Our current understanding of the Upper Mississippi River System floodplain forest. Hydrobiologia. doi:10.1007/s10750-009-0063-8

  • Sampson, S. J., 2005. Dietary overlap between two Asian carp and three native filter feeding fishes of the Illinois and Mississippi rivers. M.S. Thesis, University of Illinois, Champaign-Urbana.

  • Schiemer, F., C. Baumgartner & K. Tockner, 1999. Restoration of floodplain rivers: the Danube restoration project. Regulated Rivers: Research and Management 15: 231–244.

    Article  Google Scholar 

  • Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The ‘inshore retention concept’ and its significance for large rivers. Archiv für Hydrobiologie Supplement 135: 509–516.

    Google Scholar 

  • Strauss, E. A., W. B. Richardson, L. A. Bartsch, J. C. Cavanaugh, D. A. Bruesewitz, H. Imker, J. A. Heinz & D. M. Soballe, 2004. Nitrification in the Upper Mississippi River: patterns, controls, and contribution to the NO3 budget. Journal of the North American Benthological Society 23: 1–14.

    Article  Google Scholar 

  • Strauss, E. A., W. B. Richardson, J. C. Cavanaugh, L. A. Bartsch, R. M. Kreiling & A. J. Standorf, 2006. Variability and regulation of denitrification in an Upper Mississippi River backwater. Journal of the North American Benthological Society 25: 596–606.

    Article  Google Scholar 

  • Strayer, D. L., L. C. Smith & D. C. Smith, 1997. Effects of the zebra mussel (Dreissena polymorpha) invasion of the macrobenthos of the freshwater tidal Hudson River. Canadian Journal of Zoology 76: 419–425.

    Article  Google Scholar 

  • Theiling, C. H. & J. M. Nestler, 2010. River stage response to alteration of Upper Mississippi River channels, floodplains, and watersheds. Hydrobiologia. doi:10.1007/s10750-009-0066-5

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers? Oikos 96: 543–550.

    Article  Google Scholar 

  • Thorp, J. H., M. D. Delong & A. F. Casper, 1998a. In situ experiments on predatory regulation of a bivalve mollusc (Dreissena polymorpha) in the Mississippi and Ohio Rivers. Freshwater Biology 39: 649–661.

    Article  Google Scholar 

  • Thorp, J. H., M. D. Delong, K. S. Greenwood & A. F. Casper, 1998b. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117: 551–563.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2008. The Riverine Ecosystem Synthesis. Academic Press/Elsevier, Amsterdam.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.

    Article  Google Scholar 

  • Vörös, L., 1997. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp (Hypophthalmichthys molitrix Val.). Hydrobiologia 342: 223–228.

    Article  Google Scholar 

  • Werner, E. E. & D. J. Hall, 1988. Ontogenic habitat shifts in bluegill: the foraging rate–predation rate trade-off. Ecology 69: 1352–1366.

    Article  Google Scholar 

  • Williamson, C. J. & J. E. Garvey, 2005. Growth, fecundity, and diets of newly established silver carp in the middle Mississippi River. Transactions of the American Fisheries Society 134: 1423–1430.

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Michelle Bartsch, Kevin Irons, and Jack Grubaugh for allowing the use of figures from their study. Susan Romano and anonymous reviewers provided helpful comments on the text. I greatly appreciate the offer from the Mississippi River Research Consortium to author this article. This article represents contribution no. 2009-02 of the Large River Studies Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Delong.

Additional information

Guest editors: S. P. Romano & B. Ickes / Upper Mississippi River Research Synthesis: Forty Years of Ecological Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delong, M.D. Food webs and the Upper Mississippi River: contributions to our understanding of ecosystem function in large rivers. Hydrobiologia 640, 89–101 (2010). https://doi.org/10.1007/s10750-009-0065-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0065-6

Keywords

Navigation