Log in

Rapid spectrophotometric determination of trace amounts of palladium in water samples after dispersive liquid–liquid microextraction

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A simple, rapid, and efficient dispersive liquid–liquid microextraction method, followed by UV–Vis spectrophotometry was developed for the preconcentration and determination of Pd ions in water samples. Pd ions react with α-furildioxime (chelating agent) to form a hydrophobic complex. Various parameters were altered to study and optimize their effects on the extraction efficiency, such as pH, ligand concentration, the type and volume of extraction and dispersive solvents, extraction time, and salt concentration. Under optimized conditions, the method exhibited an enrichment factor (C org/C aq) of 25 and recovery more than 98 % within a very short extraction time. The linearity of the method ranged from 10 to 200 μg L−1. The limit of detection was 1.1 μg L−1. The relative standard deviation for the concentration of 100 μg L−1 of Pd was 2.3 % (n = 10). Finally, the developed method was successfully applied to the extraction and determination of Pd in tap, river, mineral, and sea water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi, F., Assadi, Y., Milani Hosseini, S. M. R., & Rezaee, M. (2006). Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography–flame photometric detector. Journal of Chromatography A, 1101(1), 307–312.

    Article  CAS  Google Scholar 

  • Al-Bazi, S. J., & Chow, A. (1984). Platinum metals—solution chemistry and separation methods (ion-exchange and solvent extraction). Talanta, 31(10), 815–836.

    Article  CAS  Google Scholar 

  • Beinrohr, E., Lee, M. L., Tschopel, P., & Tolg, G. (1993). Determination of platinum in biotic and environmental samples by graphite furnace atomic absorption spectrometry after its electrodeposition into a graphite tube packed with reticulated vitreous carbon. Fresenius' Journal of Analytical Chemistry, 346(6–9), 689–692.

    Article  CAS  Google Scholar 

  • Borges, D. L. G., Silva da Veiga, M. A. M., Frescura, V. L. A., Welz, B., & Curtius, A. J. (2003). Cloud-point extraction for the determination of Cd, Pb and Pd in blood by electrothermal atomic absorption spectrometry, using Ir or Ru as permanent modifiers. Journal of Analytical Atomic Spectrometry, 18(5), 501–507.

    Article  Google Scholar 

  • Brajter, K., & Slonawska, K. (1983). Application of cellulose anion-exchangers to separation of palladium from platinum or iridium with glycine as complexing agent and atomic-absorption spectrometry for detection. Talanta, 30(7), 471–474.

    Article  CAS  Google Scholar 

  • Cantarero, A., Gomez, M. M., Camara, C., & Palacios, M. A. (1994). On-line preconcentration and determination of trace platinum by flow-injection atomic absorption spectrometry. Analytica Chimica Acta, 296(2), 205–211.

    Article  CAS  Google Scholar 

  • Cheng, K. L., Ueno, K., & Imammura, T. (1982). CRC handbook of organic analytical reagents. Boca Raton: CRC.

    Google Scholar 

  • Di, P., & Davey, D. E. (1995). On-line preconcentration and separation of palladium, platinum and iridium using α-amino pyridine resin with flame atomic absorption spectrometry. Talanta, 42(5), 685–692.

    Article  CAS  Google Scholar 

  • Enzweiler, J., Potts, P. J., & Jarvis, K. E. (1995). Determination of platinum, palladium, ruthenium and iridium in geological samples by isotope dilution inductively coupled plasma mass spectrometry using a sodium peroxide fusion and tellurium coprecipitation. Analyst, 120(5), 1391–1396.

    Article  CAS  Google Scholar 

  • Farina, L., Boido, E., Carrau, F., & Dellacassa, E. (2007). Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. Journal of Chromatography. A, 1157(1), 46–50.

    Article  CAS  Google Scholar 

  • Gaita, R., & Al-Bazi, S. J. (1995). An ion-exchange method for selective separation of palladium, platinum and rhodium from solutions obtained by leaching automotive catalytic converters. Talanta, 42(2), 249–255.

    Article  CAS  Google Scholar 

  • Garcia-Lopez, M., Rodriguez, I., & Cela, R. (2007). Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples. Journal of Chromatography. A, 1166(1), 9–15.

    Article  CAS  Google Scholar 

  • Hees, T., Wenclawiak, B., Lusting, S., Schramel, P., Schwarzer, M., Schuster, M., Verstraete, D., Dams, R., & Hemers, E. (1998). Distribution of platinum group elements (Pt, Pd, Rh) in environmental and clinical matrices: composition, analytical techniques and scientific outlook. Environmental Science and Pollution Research, 5(2), 105–111.

    Article  CAS  Google Scholar 

  • Ivanova, E., & Adams, F. (1998). Flow injection on-line sorption preconcentration of platinum in a knotted reactor coupled with electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 361(5), 445–450.

    Article  CAS  Google Scholar 

  • Jarvis, I., Totland, M. M., & Jarvis, K. E. (1997). Assessment of Dowex 1-X8-based anion-exchange procedures for the separation and determination of ruthenium, rhodium, palladium, iridium, platinum and gold in geological samples by inductively coupled plasma mass spectrometry. Analyst, 122(1), 19–26.

    Article  CAS  Google Scholar 

  • Kezler, D. A., & Iberts, J. A. (1983). Sulfide bronzes: preparation and characterization of (RE) Pd3S4 (RE = Rare Earth). Inorganic Chemistry, 22(23), 3366–3367.

    Article  Google Scholar 

  • Kielhorn, J., Melber, C., Keller, D., & Mangelsdorf, I. (2002). Palladium—a review of exposure and effects to human health. International Journal Hygiene Environmental Health, 205, 417–432.

    Article  CAS  Google Scholar 

  • Kovacheva, P., & D**gova, R. (2002). Ion-exchange method for separation and concentration of platinum and palladium for analysis of environmental samples by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 464(1), 7–13.

    Article  CAS  Google Scholar 

  • Kozani, R. R., Assadi, Y., Shemirani, F., Hosseini, M. R. M., & Jamali, M. R. (2007). Determination of trihalomethanes in drinking water by dispersive liquid–liquid microextraction then gas chromatography with electron-capture detection. Chromatographia, 66(1–2), 81–86.

    Article  Google Scholar 

  • Lee, S. D. (1980). Biochemical aspects of environmental pollutants. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Lee, M. L., Tolg, G., Beinrohr, E., & Tschopel, P. (1993). Preconcentration of palladium, platinum and rhodium by on-line sorbent extraction for graphite furnace atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 272(2), 193–203.

    Article  CAS  Google Scholar 

  • Machida, K., Enyo, M., Adachiand, G., & Shiokawa, J. (1987). Synthesis and electrocatalytic properties of rare earth platinum or palladium bronzes. Bulletin Society Japan, 60(1), 411–413.

    Article  CAS  Google Scholar 

  • Marczenko, Z. (1986). In M. Masson (Ed.), Separation and spectrophotometric determination of elements. New York: Wiley.

    Google Scholar 

  • Moldovan, M., Gomez, M. M., Palacios, M. A., Moldovan, M., Milagros Gómez, M., & Palacios, M. A. (2003). On-line preconcentration of palladium on alumina microcolumns and determination in urban waters by inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 478(2), 209–217.

    Article  CAS  Google Scholar 

  • Naseri, M. T., Hemmatkhah, P., Milani Hosseini, M. R., & Assadi, Y. (2008). Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Analytica Chimica Acta, 610(1), 135–141.

    Article  CAS  Google Scholar 

  • Psillakis, E., Kalogerakis, N., Psillakis, E., & Kalogerakis, N. (2003). Developments in liquid-phase microextraction. Trends in Analytical Chemistry, 22(9), 565–574.

    Article  CAS  Google Scholar 

  • Qu, Y. B. (1996). Recent developments in the determination of precious metals. Analyst, 121(2), 139–161.

    Article  CAS  Google Scholar 

  • Rahnama Kozani, R., Assadi, Y., Shemirani, F., Hosseini, M. R. M., & Jamali, M. R. (2007). Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection. Talanta, 72(2), 387–393.

    Article  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography. A, 1116(1–2), 1–9.

    Article  CAS  Google Scholar 

  • Rezaee, M., Yamini, Y., Shariati, S., Esrafili, A., & Shamsipur, M. (2009). Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. Journal of Chromatography. A, 1216(9), 1511–1514.

    Article  CAS  Google Scholar 

  • Schuster, M., & Schwarzer, M. (1996). Selective determination of palladium by on-line column preconcentration and graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 328(1), 1–11.

    Article  CAS  Google Scholar 

  • Shamsipur, M., & Ramezani, M. (2008). Selective determination of ultra trace amounts of gold by graphite furnace atomic absorption spectrometry after dispersive liquid–liquid microextraction. Talanta, 75(1), 294–300.

    Article  CAS  Google Scholar 

  • Shen, G., & Lee, H. K. (2002). Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Analytical Chemistry, 74(3), 648–654.

    Article  CAS  Google Scholar 

  • Su, Z. X., Pu, Q. S., Luo, X. Y., Chang, X. J., Zhan, G. Y., & Ren, F. Z. (1995). Application of a macroporous resin containing imidazoline groups to preconcentration and separation of gold, platinum and palladium prior to ICP-AES determination. Talanta, 42(8), 1127–1133.

    Article  CAS  Google Scholar 

  • Wu, Y., Hu, B., Jiang, Z., & Chen, S. (2002). Low temperature vaporization for ICP-AES determination of palladium in geological samples using sample introduction of gaseous palladium oxinate. Journal of Analytical Atomic Spectrometry, 17(2), 121–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the research council at the Payame Noor University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyhaneh Rahnama Kozani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahnama Kozani, R., Mofid-Nakhaei, J. & Jamali, M.R. Rapid spectrophotometric determination of trace amounts of palladium in water samples after dispersive liquid–liquid microextraction. Environ Monit Assess 185, 6531–6537 (2013). https://doi.org/10.1007/s10661-012-3044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3044-8

Keywords

Navigation