Log in

Numerical computations with H(div)-finite elements for the Brinkman problem

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in Könnö and Stenberg (2010; Math Models Methods Appl Sci, 2011). Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990)

    Article  MathSciNet  Google Scholar 

  2. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261–298 (1990)

    Article  MathSciNet  Google Scholar 

  3. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1985) (1984)

    Article  MathSciNet  Google Scholar 

  5. Fraejis de Veubeke B.M.: Displacement and equilibrium models in the finite element method. In: Zienkiewics, O.C., Holister, G.S. (eds.) Stress Analysis, pp. 145–197. Wiley, New York (1965)

    Google Scholar 

  6. Braess, D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, New York (1992, 1997)

    MATH  Google Scholar 

  7. Brezzi, F., Douglas, J., Jr., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    Book  Google Scholar 

  9. Burman, E., Hansbo, P.: Stabilized Crouzeix–Raviart element for the Darcy–Stokes problem. Numer. Methods Partial Differ. Equ. 21(5), 986–997 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burman, E., Hansbo, P.: Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195(19–22), 2393–2410 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24(1), 127–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4(4), 308–317 (2001)

    Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. D’Angelo C., Zunino P.: A finite element method based on weighted interior penalties for heterogeneous incompressible flows. SIAM J. Numer. Anal. 47(5), 3990–4020 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Egger H.: A class of hybrid mortar finite element methods for interface problems with non-matching meshes. Technical report, AICES-2009-2 (2009)

  17. Ehrhardt, M., Fuhrmann, J., Linke, A.: A Model of an Electrochemical Flow cell with Porous Layer. Weierstrass Institute for Applied Analysis and Stochastics, Berlin (2009)

  18. Ehrhardt, M., Fuhrmann, J., Holzbecher, E., Linke, A.: Mathematical modeling of channel—porous layer interfaces in PEM fuel cells. In: Conference on Fundamentals and Developments of Fuel Cells, University of Nancy, Nancy, France. ISBN 978-2-7466-0413-1, 10–12th December 2008

  19. Gekeler E.: Mathematische Methoden zur Mechanik. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Griebel, M., Klitz, M.: Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hannukainen, A., Juntunen, M., Stenberg, R.: Computations with finite element methods for the Brinkman problem. Comput. Geosci. 15, 155–166 (2011)

    Article  MATH  Google Scholar 

  22. Hansbo, P., Juntunen, M.: Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow. Appl. Numer. Math. 59(6), 1274–1289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Iliev, O., Lazarov, R., Willems, J.: Discontinuous Galerkin subgrid finite element method for heterogeneous Brinkman’s equations. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Large-Scale Scientific Computing, vol. 5910 of Lecture Notes in Computer Science, pp. 14–25. Springer, Berlin (2010)

    Chapter  Google Scholar 

  24. Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo 47(3), 129–147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229(17), 5933–5943 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kaya, T., Goldak, J.: Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf. 43, 775–785 (2007)

    Article  Google Scholar 

  27. Könnö, J., Stenberg, R.: Analysis of H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. (2011). doi:10.1142/S0218202511005726

    MATH  Google Scholar 

  28. Könnö, J., Stenberg, R.: Non-conforming finite element method for the Brinkman problem. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications 2009, pp. 515–522. Springer, Berlin (2010)

    Chapter  Google Scholar 

  29. Lévy, T.: Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292(12), 871–874, Erratum (17), 1239 (1981)

  30. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mardal, K.A., Tai, X-C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nédélec, J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50(1), 57–81 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nitsche J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971, Collection of articles dedicated to Lothar Collatz on his sixtieth birthday)

  34. Popov, P., Efendiev, Y., Qin, G.: Multiscale modeling and simulations of flows in naturally fractured Karst reservoirs. Commun. Comput. Phys. 6(1), 162–184 (2009)

    Article  MathSciNet  Google Scholar 

  35. Rajagopal K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. **e, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)

    MATH  MathSciNet  Google Scholar 

  38. Xu, X., Zhang, S.: A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations. SIAM J. Sci. Comput. 32(2), 855–874 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Könnö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Könnö, J., Stenberg, R. Numerical computations with H(div)-finite elements for the Brinkman problem. Comput Geosci 16, 139–158 (2012). https://doi.org/10.1007/s10596-011-9259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-011-9259-x

Keywords

Navigation