Log in

Homogenization of a Darcy–Stokes system modeling vuggy porous media

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We derive a macroscopic model for single-phase, incompressible, viscous fluid flow in a porous medium with small cavities called vugs. We model the vuggy medium on the microscopic scale using Stokes equations within the vugular inclusions, Darcy's law within the porous rock, and a Beavers–Joseph–Saffman boundary condition on the interface between the two regions. We assume periodicity of the medium and obtain uniform energy estimates independent of the period. Through a two-scale homogenization limit as the period tends to zero, we obtain a macroscopic Darcy's law governing the medium on larger scales. We also develop some needed generalizations of the two-scale convergence theory needed for our bimodal medium, including a two-scale convergence result on the Darcy–Stokes interface. The macroscopic Darcy permeability is computable from the solution of a cell problem. An analytic solution to this problem in a simple geometry suggests that: (1) flow along vug channels is primarily Poiseuille with a small perturbation related to the Beavers–Joseph slip, and (2) flow that alternates from vug to matrix behaves as if the vugs have infinite permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G., Damlamain, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. In: Bourgeat, A. et al. (eds.) Proceedings of the International Conference on Mathematical Modelling of Flow Through Porous Media (May 1995), pp. 15–25. World Scientific Pub., Singapore (1996)

    Google Scholar 

  3. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium (in press).

  4. Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  6. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  7. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  8. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structure. North Holland, Amsterdam (1978)

    Google Scholar 

  9. Bouchitté, G., Fragala, I.: Homogenization of thin structures by the two-scale method with respect to measures. SIAM J. Math. Anal. 32(6), 1198–1226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    MATH  Google Scholar 

  11. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO 8, 129–151 (1974)

    MathSciNet  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  13. Gartling, D.K., Hickox, C.E., Givler, R.C.: Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn. 7, 23–48 (1996)

    Article  MATH  Google Scholar 

  14. Hornung, U. (ed.): Homogenization and Porous Media, Interdisciplinary Applied Mathematics Series. Springer-Verlag, New York (1997)

    Google Scholar 

  15. Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Classe Fis. Mat. Ser. IV 23, 403–465 (1996)

    MATH  Google Scholar 

  16. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer-Verlag, New York (1994)

    Google Scholar 

  18. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philol. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  19. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications 1. Springer-Verlag, Berlin (1970)

    Google Scholar 

  21. Neuss-Radu, M.: Some extensions of two-scale convergence. C. R. Acad. Sci., Sér. 1 Math. 322, 899–904 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977)

    Book  Google Scholar 

  24. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Google Scholar 

  25. Salinger, A.G., Aris, R., Derby, J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18, 1185–1209 (1994)

    Article  MATH  Google Scholar 

  26. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, no. 127 in Lecture Notes in Physics. Springer-Verlag, New York (1980)

    Google Scholar 

  27. Tartar, L.: Incompressible fluid flow in a porous medium–convergence of the homogenization process. In: Non-homogeneous Media and Vibration Theory, E. Sanchez-Palencia, Lecture Notes in Physics 127, pp. 368–377. Springer-Verlag, Berlin (1980)

  28. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, 2nd ed. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  29. Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy's law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Arbogast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbogast, T., Lehr, H.L. Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput Geosci 10, 291–302 (2006). https://doi.org/10.1007/s10596-006-9024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9024-8

Keywords

Navigation