Log in

A stochastic collocation based Kalman filter for data assimilation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, a stochastic collocation-based Kalman filter (SCKF) is developed to estimate the hydraulic conductivity from direct and indirect measurements. It combines the advantages of the ensemble Kalman filter (EnKF) for dynamic data assimilation and the polynomial chaos expansion (PCE) for efficient uncertainty quantification. In this approach, the random log hydraulic conductivity field is first parameterized by the Karhunen–Loeve (KL) expansion and the hydraulic pressure is expressed by the PCE. The coefficients of PCE are solved with a collocation technique. Realizations are constructed by choosing collocation point sets in the random space. The stochastic collocation method is non-intrusive in that such realizations are solved forward in time via an existing deterministic solver independently as in the Monte Carlo method. The needed entries of the state covariance matrix are approximated with the coefficients of PCE, which can be recovered from the collocation results. The system states are updated by updating the PCE coefficients. A 2D heterogeneous flow example is used to demonstrate the applicability of the SCKF with respect to different factors, such as initial guess, variance, correlation length, and the number of observations. The results are compared with those from the EnKF method. It is shown that the SCKF is computationally more efficient than the EnKF under certain conditions. Each approach has its own advantages and limitations. The performance of the SCKF decreases with larger variance, smaller correlation ratio, and fewer observations. Hence, the choice between the two methods is problem dependent. As a non-intrusive method, the SCKF can be easily extended to multiphase flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989)

    Google Scholar 

  2. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Zhang, D.X.: Stochastic Methods for Flow in Porous Media: Co** with Uncertainties. Academic, San Diego (2002)

    Google Scholar 

  4. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974)

    Google Scholar 

  5. Ljung, L.: Asymptotic-behavior of the extended kalman filter as a parameter estimator for linear-systems. IEEE Trans. Autom. Control. 24, 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)

    Article  Google Scholar 

  7. Pham, D.T., Verron, J., Roubaud, M.C.: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16, 323–340 (1998)

    Article  Google Scholar 

  8. McLaughlin, D.: An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Adv. Water Resour. 25, 1275–1286 (2002)

    Article  Google Scholar 

  9. Chen, Y., Zhang, D.X.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Resour. 29, 1107–1122 (2006)

    Article  Google Scholar 

  10. Naevdal, G., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10, 66–74 (2005)

    Google Scholar 

  11. Liu, N., Oliver, D.S.: Ensemble Kalman filter for automatic history matching of geologic facies. J. Pet. Sci. Eng. 47, 147–161 (2005)

    Article  Google Scholar 

  12. Gu, Y.Q., Oliver, D.S.: History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J. 10, 217–224 (2005)

    Google Scholar 

  13. Zafari, M., Reynolds, A.C.: Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter. SPE J. 12, 382–391 (2007)

    Google Scholar 

  14. Whitaker, J.S., Hamill, T.M.: Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130, 1913–1924 (2002)

    Article  Google Scholar 

  15. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126, 796–811 (1998)

    Article  Google Scholar 

  16. Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control. Syst. Mag. 29, 83–104 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ghanem, R., Spanos, P.: Stochastic Finite Element. A spectral approach. Springer, New York (1991)

    Google Scholar 

  18. **u, D.B., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. Siam. J. Sci. Comput. 24, 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560–586 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saad, G.A.: Stochastic Data Assimilation with Application to Multi-Phase Flow and Health Monitoring Problems. PhD thesis, University of Southern California, Los Angeles (2007)

  21. Zhang, D.X., Lu, Z.M., Chen, Y.: Dynamic reservoir data assimilation with an efficient, dimension-reduced Kalman filter. SPE J. 12, 108–117 (2007)

    Google Scholar 

  22. Tatang, M.A., Pan, W.W., Prinn, R.G., McRae, G.J.: An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res. 102, 21925–21932 (1997)

    Article  Google Scholar 

  23. Li, H., Zhang, D.X.: Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods. Water Resour. Res. 43, W9409 (2007)

    Article  Google Scholar 

  24. Shi, L.S., Yang, J.H., Zhang, D.X., Li, H.: Probabilistic collocation method for unconfined flow in heterogeneous media. J. Hydrol. 365, 4–10 (2009)

    Article  Google Scholar 

  25. **u, D.B., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. Siam. J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. Siam J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chang, H.B., Zhang, D.X.: A comparative study of stochastic collocation methods for flow in spatially correlated random fields. Commun. Comput. Phys. 6, 509–535 (2009)

    MathSciNet  Google Scholar 

  28. Zabaras, N., Ganapathysubramanian, B.: A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach. J. Comput. Phys. 227, 4697–4735 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sarma, P., Durlofsky, L.J., Aziz, K.: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math. Geosci. 40, 3–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. **u, D.B.: Numerical integration formulas of degree two. Appl. Numer. Math. 58, 1515–1520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Chen, Y., Oliver, D.S.: Improved initial sampling for the ensemble Kalman filter. Computat. Geosci. 13, 13–26 (2009)

    Article  MATH  Google Scholar 

  32. Li, H., Zhang, D.X.: Efficient and accurate quantification of uncertainty for multiphase flow with probabilistic collocation method. SPE J. 14, 665–679 (2009)

    Google Scholar 

  33. Sarma, P., Durlofsky, L. J., Aziz, K.: Efficient closed-loop production optimization under uncertainty. SPE paper 94241 (2005)

  34. Sakamoto, S., Ghanem, R.: Polynomial chaos decomposition for simulation of non-Gaussian non-stationary stochastic processes. ASCE J. Eng. Mech. 128, 190–201 (2002)

    Article  Google Scholar 

  35. Wan, X., Karniadakis, G.E.: Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Comput. Meth. Appl. Mech. Eng. 198, 1985–1995 (2009)

    Article  MathSciNet  Google Scholar 

  36. Sarma, P., Chen, W.H.: Generalization of the ensemble Kalman filter using kernels for non-gaussian random fields. SPE paper 119177 (2009)

  37. Li, W.X., Lu, Z.M., Zhang, D.X.: Stochastic analysis of unsaturated flow with probabilistic collocation method. Water Resour. Res. 45, W08425 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L., Zhang, D. A stochastic collocation based Kalman filter for data assimilation. Comput Geosci 14, 721–744 (2010). https://doi.org/10.1007/s10596-010-9183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-010-9183-5

Keywords

Navigation