Log in

Ensemble Kalman Filter for Assimilating Experimental Data into Large-Eddy Simulations of Turbulent Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Data assimilation techniques are investigated for integrating high-speed high-resolution experimental data into large-eddy simulations. To this end, an ensemble Kalman filter is employed to assimilate velocity measurements of a turbulent jet at a Reynolds number of 13,500 into simulations. The goal of the current work is to examine the behavior of the assimilation algorithm for state estimation of turbulent flows that are of relevance to engineering applications. This is accomplished by investigating the impact that localization, measurement uncertainties, assimilation frequency, data sparsity and ensemble size have on the estimated state vector. For the flow configuration and computational setup considered in this study an optimal value of the localization radius is identified, which minimizes the error between experimental data and state vector. The impact of experimental uncertainties on the state estimation is demonstrated to provide solution bounds on the assimilation algorithm. It is found that increasing the number of ensembles has a positive impact on the state estimation. In comparison, decreasing the assimilation frequency or reducing the experimental data available for assimilation is found to have a negative impact on the state estimation. These findings demonstrate the viability of assimilating measurements into numerical simulations to improve state estimates, to support parameter evaluations and to guide model assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  2. Nastac, G., Labahn, J.W., Magri, L., Ihme, M.: Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids 2(9), 094606 (2017)

    Article  Google Scholar 

  3. Asch, M., Bocquet, M., Nodet, M.: Data assimilation: methods, algorithms, and applications. SIAM (2016)

  4. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 137(656), 553–597 (2011)

  5. ECMWF: Annual report 2016, https://www.ecmwf.int/en/annual-report-2016/contents (2016)

  6. Navon, I.M.: Data assimilation for numerical weather prediction: a review. In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp 21–65. Springer (2009)

  7. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et al.: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77(3), 437–471 (1996)

    Article  Google Scholar 

  8. Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J.: The era-40 re-analysis. Q. J. Royal Meteorol. Soc. 131(612), 2961–3012 (2005)

  9. Omrani, H., Drobinski, P., Dubos, T.: Using nudging to improve global–regional dynamic consistency in limited-area climate modeling: what should we nudge? Clim. Dyn. 44(5-6), 1627–1644 (2015)

    Article  Google Scholar 

  10. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162 (1994)

    Article  Google Scholar 

  11. Jahn, W., Rein, G., Torero, J.L.: Forecasting fire growth using an inverse zone modelling approach. Fire Safety J. 46, 81–88 (2011)

    Article  Google Scholar 

  12. Gao, X., Wang, Y., Overton, N., Zupanski, M., Tu, X.: Data-assimilated computational fluid dynamics modeling of convection-diffusion-reaction problems. J. Comput. Sci. 21, 38–59 (2017)

    Article  MathSciNet  Google Scholar 

  13. Suzuki, T.: Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J. Fluid Mech. 709, 249–288 (2012)

    Article  MathSciNet  Google Scholar 

  14. Labahn, J.W., Wu, H., Coriton, B., Frank, J.H., Ihme, M.: Data assimilation using high-speed measurements and LES to examine local extinction events in turbulent flames. Proc. Combust. Inst. 37, 2259–2266 (2019)

    Article  Google Scholar 

  15. Edwards, J.R., Patton, C.H., Mirgolbabaei, H., Wignall, T.J., Echekki, T.: 4D data assimilation for large eddy simulation of high speed turbulent combustion. AIAA Paper, 2015–3836 (2015)

  16. Meldi, M., Poux, A.: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows. J. Comput. Phys. 347, 207–234 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sousa, J., García-Sánchez, C., Gorlé, C.: Improving urban flow predictions through data assimilation. Build Environ. 132, 282–290 (2018)

    Article  Google Scholar 

  18. Symon, S., Dovetta, N., McKeon, B.J., Sipp, D., Schmid, P.J.: Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil. Exp. Fluids 58(5), 61 (2017)

    Article  Google Scholar 

  19. Rossmann, T., Knight, D.D., Jaluria, Y.: Data assimilation optimization for the evaluation of inverse mixing and convection flows. Fluid Dyn. Res. 47(5), 051405 (2015)

    Article  MathSciNet  Google Scholar 

  20. Coriton, B., Frank, J.H.: High-speed tomographic PIV measurements of strain rate intermittency and clustering in turbulent partially-premixed jet flames. Proc. Combust. Inst. 35(2), 1243–1250 (2015)

    Article  Google Scholar 

  21. Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)

    Article  MathSciNet  Google Scholar 

  22. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  Google Scholar 

  23. Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids. 16(3), 257–278 (1988)

    Article  Google Scholar 

  24. Bannister, R.N.: A review of operational methods of variational and ensemble-variational data assimilation. Q. J. Royal Meteorol. Soc. 143(703), 607–633 (2017)

    Article  Google Scholar 

  25. Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M., Pailleux, J.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). i: formulation. Q. J. Royal Meteorol. Soc. 124(550), 1783–1807 (1998)

    Google Scholar 

  26. Fisher, M., Andersson, E.: Developments in 4D-Var and Kalman filtering, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading (2001)

  27. Lorenc, A.C., Rawlins, F.: Why does 4D-Var beat 3D-Var. Q. J. Royal Meteorol. Soc. 131(613), 3247–3257 (2005)

    Article  Google Scholar 

  28. Evensen, G.: Data Assimilation: the Ensemble Kalman Filter. Springer, Berlin (2009)

    Book  Google Scholar 

  29. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report TR 95-041, University of North Carolina at Chapel Hill (2001)

  30. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam. 53(4), 343–367 (2003)

    Article  Google Scholar 

  31. Schwartz, C.S., Romine, G.S., Sobash, R.A., Fossell, K.R., Weisman, M.L.: NCAR’S experimental real-time convection-allowing ensemble prediction system. Weather Forecast. 30(6), 1645–1654 (2015)

    Article  Google Scholar 

  32. Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. Royal Meteorol. Soc. 125(554), 723–757 (1999)

    Article  Google Scholar 

  33. Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Symp. (Int.) Combust. 27(1), 1087–1095 (1998)

    Article  Google Scholar 

  34. Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  35. Coriton, B., Steinberg, A.M., Frank, J.H.: High-speed tomographic PIV and OH PLIf measurements in turbulent reactive flows. Exp. Fluids 55(6), 1743 (2014)

    Article  Google Scholar 

  36. Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26(7), 074002 (2015)

    Article  Google Scholar 

  37. Smits, A.J., Dussauge, J.P.: Turbulent shear layers in supersonic flow. Springer, Berlin (2006)

    Google Scholar 

  38. de Silva, C.M., Philip, J., Marusic, I.: Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. Exp. Fluids 54(7), 1557 (2013)

    Article  Google Scholar 

  39. Mi, J., Nobes, D.S., Nathan, G.J.: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001)

    Article  Google Scholar 

  40. Kothnur, P.S., Tsurikov, M.S., Clemens, N.T., Donbar, J.M., Carter, C.D.: Planar imaging of CH, OH, and velocity in turbulent non-premixed jet flames. Proc. Combust. Inst. 29, 1921–1927 (2002)

    Article  Google Scholar 

  41. Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst. Mag. 29(3), 83–104 (2009)

    Article  MathSciNet  Google Scholar 

  42. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126(3), 796–811 (1998)

    Article  Google Scholar 

  43. Nerger, L.: On serial observation processing in localized ensemble Kalman filters. Mon. Weather Rev. 143(5), 1554–1567 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support through NASA with award NNX15AV04A and the Stanford-Ford Alliance. J.H. Frank and B. Coriton gratefully acknowledge the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Labahn.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labahn, J.W., Wu, H., Harris, S.R. et al. Ensemble Kalman Filter for Assimilating Experimental Data into Large-Eddy Simulations of Turbulent Flows. Flow Turbulence Combust 104, 861–893 (2020). https://doi.org/10.1007/s10494-019-00093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00093-1

Keywords

Navigation