Log in

Cellulose–halloysite nanotube composite hydrogels for curcumin delivery

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullayev E, Joshi A, Wei W et al (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226

    Article  CAS  Google Scholar 

  • Ariga K, Lvov YM, Kawakami K et al (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63(9):762–771

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548

    Article  CAS  Google Scholar 

  • Cai J, Liu S, Feng J et al (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem 124(9):2118–2121

    Article  Google Scholar 

  • Cavallaro G, Lazzara G, Konnova S et al (2014) Composite films of natural clay nanotubes with cellulose and chitosan. Green Mater 2(4):232

    Article  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1):13

    CAS  Google Scholar 

  • De Oliveira Barud HG, Da Silva RR, Da Silva Barud H et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420

    Article  Google Scholar 

  • Demilecamps A, Reichenauer G, Rigacci A et al (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21(4):2625–2636

    Article  CAS  Google Scholar 

  • Divakaran AV, Azad LB, Surwase SS et al (2016) Mechanically tunable curcumin incorporated polyurethane hydrogels as potential biomaterials. Chem Mater 28(7):2120–2130

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Hanid NA, Wahit MU, Guo Q et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97

    Article  Google Scholar 

  • Huang B, Liu M, Long Z et al (2017) Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng, C 70:303–310

    Article  CAS  Google Scholar 

  • Jiang MC, Yang-Yen HF, Yen JJY et al (1996) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26(1):111–120

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Levis S, Deasy P (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243(1):125–134

    Article  CAS  Google Scholar 

  • Li S-M, Jia N, Ma M-G et al (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447

    Article  CAS  Google Scholar 

  • Liu M, Guo B, Du M et al (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703

    Article  Google Scholar 

  • Liu M, Li W, Rong J et al (2012) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290(10):895–905

    Article  CAS  Google Scholar 

  • Liu M, Wu C, Jiao Y et al (2013a) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1(15):2078–2089

    Article  CAS  Google Scholar 

  • Liu M, Zhang Y, Li J et al (2013b) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30

    Article  CAS  Google Scholar 

  • Liu M, Jia Z, Jia D et al (2014a) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  CAS  Google Scholar 

  • Liu M, Shen Y, Ao P et al (2014b) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4(45):23540–23553

    Article  CAS  Google Scholar 

  • Liu M, Huang J, Luo B et al (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31

    Article  Google Scholar 

  • Liu M, Chang Y, Yang J et al (2016a) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4(13):2253–2263

    Article  CAS  Google Scholar 

  • Liu M, He R, Yang J et al (2016b) Polysaccharide–halloysite nanotube composites for biomedical applications: a review. Clay Miner 51(3):457–467

    Article  CAS  Google Scholar 

  • Liu M, He R, Yang J et al (2016c) Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells. ACS Appl Mater Interfaces 8(12):7709–7719

    Article  CAS  Google Scholar 

  • Luo P, Zhao Y, Zhang B et al (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497

    Article  CAS  Google Scholar 

  • Lvov YM, Shchukin DG, Mohwald H et al (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820

    Article  CAS  Google Scholar 

  • Lvov Y, Wang W, Zhang L et al (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51

    Article  CAS  Google Scholar 

  • Meibom KL, Li XB, Nielsen AT et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101(8):2524–2529

    Article  CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Bueso-Ramos C, Chatterjee D et al (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609

    Article  CAS  Google Scholar 

  • Pandey G, Munguambe DM, Tharmavaram M et al (2017) Halloysite nanotubes-An efficient ‘nano-support’for the immobilization of α-amylase. Appl Clay Sci 136:184–191

    Article  CAS  Google Scholar 

  • Price RR, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18(6):713–722

    Article  CAS  Google Scholar 

  • Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510

    Article  CAS  Google Scholar 

  • Ren X, Chen D, Meng X et al (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. Colloids Surf B 72(2):188–192

    Article  CAS  Google Scholar 

  • Russo R, Malinconico M, Santagata G (2007) Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromol 8(10):3193–3197

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Mahmoudian S et al (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2):936–943

    Article  CAS  Google Scholar 

  • Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463

    Article  CAS  Google Scholar 

  • Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826

    Article  CAS  Google Scholar 

  • Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A. doi:10.1039/C6TA04844G

    Google Scholar 

  • Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862

    Article  Google Scholar 

  • Yang J, Wu Y, Shen Y et al (2016) Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces 8(40):26578–26590

    Article  CAS  Google Scholar 

  • Yu X, Tong S, Ge M et al (2013) Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr Polym 92(1):269–275

    Article  CAS  Google Scholar 

  • Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Article  CAS  Google Scholar 

  • Zhang H, Wang Z, Zhang Z et al (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19(5):698–704

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30

    Article  CAS  Google Scholar 

  • Zhu B-K, **e S-H, Xu Z-K et al (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (2015AA020915), the National Natural Science Foundation of China (51473069 and 51502113), and the Guangdong Natural Science Funds for Distinguished Young Scholar (S2013050014606), Science and Technology Planning Project of Guangdong Province (2014A020217006), Guangdong Special Support Program (2014TQ01C127), the Special Fund for Ocean-Scientific Research in the public interest (201405105), and the Pearl River S&T Nova Program of Guangzhou (201610010026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Liu, M. & Zhou, C. Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose 24, 2861–2875 (2017). https://doi.org/10.1007/s10570-017-1316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1316-8

Keywords

Navigation