Log in

Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Dual responsive composite hydrogels were successfully prepared by combining cellulose nanofibril (CNF) isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation with thermally responsive poly(N-isopropylacrylamide) (PNIPAAm) for drug release at 10 wt% CNF loading and − 20 °C polymerization temperature. pH responsive hydrogels were acquired by adjusting the carboxyl charge level of the CNF during TEMPO-mediated oxidation. CNF–PNIPAAm hydrogels fabricated were characterized in regards to compressive strength, functional group, low critical solution temperature (LCST), and swelling ratio of the hydrogels at different temperatures from 20 to 60 °C and pH levels from 2 to 10. Finally, the drug release behavior of these hydrogels was also investigated using methylene blue as a model drug. As the carboxylate content increases, the dual responsiveness of hydrogel improved at the expense of the compression strength. The CNF–PNIPAAm hydrogels were swollen and translucent below the LCST, and shrunken and opaque above the LCST. The Higuchi and the Krosmeyer and Peppas model was best-fitted to the drug release behavior of these hydrogels at pH 10 and pH 2, respectively. The results also indicated that a proper selection of polymerization temperature provided a way of tuning the dual-responsiveness of the hydrogels. These results also suggest that the CNF–PNIPAAm hydrogels can release drugs on demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aixiang Q, Mangeng L, Qunfeng L, ** Z (2007) Synthesis and characterization of thermo-sensitive poly(N-isopropylacrylamide) hydrogel with fast response rate. Front Chem China 2:135–139

    Article  Google Scholar 

  • Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalyst 1:83–96

    Article  CAS  Google Scholar 

  • Barazzouk S, Daneault C (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493

    Article  CAS  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Cha RT, He ZB, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718

    Article  CAS  Google Scholar 

  • Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93:207–215

    Article  CAS  Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345

    Article  CAS  Google Scholar 

  • Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal and mechanical studies. Biomacromol 13:2188–2194

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508

    Article  CAS  Google Scholar 

  • Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition–fragmentation chain transfer polymerization. Cellulose 24:2241–2254

    Article  CAS  Google Scholar 

  • Hebeish A, Farag S, Sharaf S, Shaheen ThI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166

    Article  CAS  Google Scholar 

  • Hebeish A, Farag S, Sharaf S, Shaheen ThI (2015) Radically new cellulose nanocomposite hydrogels: temperature and pH responsive characters. Carbohydr Polym 81:356–361

    CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Jiang Y, Wu Y, Huo Y (2015) Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J Biomater Sci Polym Ed 26:917–930

    Article  CAS  Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20

    Article  CAS  Google Scholar 

  • Lee KY, Aitomaki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matric composites. Compos Sci Technol 105:15–27

    Article  Google Scholar 

  • Liu HL, Liu MZ, Ma LW, Chen J (2009) Thermo- and pH-sensitive comb-type grafted poly(N,N-diethyacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Eur Polym J 45:2060–2067

    Article  CAS  Google Scholar 

  • Masruchin N, Park BD (2015) Manipulation of surface carboxyl content on TEMPO-oxidized cellulose fibrils. J Korean Wood Sci Technol 43:613–627

    Article  Google Scholar 

  • Masruchin N, Park BD, Causin V (2015a) Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. J Ind Eng Chem 29:265–272

    Article  CAS  Google Scholar 

  • Masruchin N, Park BD, Causin V, Um IC (2015b) Characteristic of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22:1993–2010

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Hang Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    Article  CAS  Google Scholar 

  • Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20:2393–2402

    Article  CAS  Google Scholar 

  • Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25:169–184

    Article  CAS  Google Scholar 

  • Sun XF, Wang HH, **g ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366

    Article  CAS  Google Scholar 

  • Sun XF, Ye Q, **g ZX, Li Y (2014) Preparation of hemicelluloses-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35:45–52

    Article  CAS  Google Scholar 

  • Sun XF, Gan Z, **g ZX, Wang HH, Wang D, ** Y (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:41606

    Article  Google Scholar 

  • Tejado A, Alam MdN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842

    Article  CAS  Google Scholar 

  • Wang J, Zhou XS, **ao HN (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754

    Article  CAS  Google Scholar 

  • Wei J, Chen Y, Liu H, Du C, Yu H, Ru J, Zhou Z (2016a) Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly(N-isopropylacrylamide)-based composite hydrogels. Ind Crops Prod 92:227–235

    Article  CAS  Google Scholar 

  • Wei J, Chen Y, Liu H, Du C, Yu H, Zhou Z (2016b) Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohydr Polym 147:201–207

    Article  CAS  Google Scholar 

  • **ao XC (2007) Effect of the initiator on thermosensitive rate of poly(N-isopropylacrylamide) hydrogels. eXPRESS Polym Lett 4:232–235

    Article  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Zhang ZX, Zhuo RX (2000) Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property. J Colloid Interface Sci 223:311–313

    Article  CAS  Google Scholar 

  • Zhang ZX, Wu DQ, Chu CC (2003) Effect of the crosslinking level on the properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. J Polym Sci Part B Polym Phys 41:582–593

    Article  CAS  Google Scholar 

  • Zhang ZX, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  • Zhang ZX, Xu XD, Cheng SX, Zhuo RX (2008) Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4:385–391

    Article  CAS  Google Scholar 

  • Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425

    Article  CAS  Google Scholar 

  • Zhang H, Yang M, Luan Q, Tang H, Huang F, **ang X, Yang C, Bao Y (2017) Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J Agric Food Chem 65:3785–3791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Joint Research Program through the National Research Foundation (NRF) of Korea and funded by the Ministry of Education, Science and Technology (Grant No: 2016K1A3A1A12953690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Dae Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masruchin, N., Park, BD. & Causin, V. Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release. Cellulose 25, 485–502 (2018). https://doi.org/10.1007/s10570-017-1585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1585-2

Keywords

Navigation