Log in

Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Ball mill-assisted surface-fluorination of cellulose nanofiber was studied for two solvents with different polarity as dispersion/reaction medium. Milling cellulose in neat toluene gave irregular-shaped decrystallized cellulose particles; addition of pentafluorobenzoyl chloride (PFBC) to the system gave partially fluorinated cellulose as thin flakes with smooth surfaces, which maintained original crystallinity. Milling in neat dimethyl formamide (DMF) caused partial dispersion of nanofibers without decrystallization; milling in PFBC/DMF gave more enhanced dispersion of surface-fluorinated nanofibers. Both fluorinated materials were hydrophobic, with water contact angles of 103°–113°. Bulk degree of esterification was 0.20 for toluene and 0.57 for DMF systems. These results show characteristic influences of solvent species in reactive ball milling of cellulose in terms of fibrillation and surface esterification of nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167

    Article  CAS  Google Scholar 

  • Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Caulfiel DF, Steffes RA (1969) Water-induced recrystallization of cellulose. Tappi 52:1361–1368

    Google Scholar 

  • Cunha AG, Carmen SRF, Armando JDS, Carlos PN, Alessandro G, Elina O, Fardim Pedro (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352

    Article  CAS  Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  Google Scholar 

  • Eyholzer C, Lopez SF, Tingaut P, Zimmermann T, Oksman K (2010) Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose 17:793–802

    Article  CAS  Google Scholar 

  • Fujisawa S, Tsuguyuki S, Satoshi K, Tadahisa I, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546

    Article  CAS  Google Scholar 

  • Harrisson S, Drisko GL, Malmstrom E, Hult A, Wooley KL (2011) Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose Microcrystals. Biomacromolecules 12:1214–1223

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1946a) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1946b) Recrystallization of amorphous cellulose. J Am Chem Soc 68:1138

    Article  CAS  Google Scholar 

  • Huang P, Wu M, Kuga S, Huang Y (2013) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178

    Article  CAS  Google Scholar 

  • Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322

    Article  CAS  Google Scholar 

  • Isobe N, Kim U-J, Kimura S, Wada M, Kuga S (2011) Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant. J Colloid Interface Sci 359:194–201

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2:350–359

    Article  CAS  Google Scholar 

  • Joly C, Gauthier R, Chabert B (1996) Physical chemistry of the interface in polypropylene/cellulosic-fibre composites. Compos Sci Technol 56:761–765

    Article  CAS  Google Scholar 

  • Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Inter 3:1813–1816

    Article  CAS  Google Scholar 

  • Li Y, Mai YW, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  • Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  • Maity J, Kothary P, O’Rear EA, Jacobi C (2010) Preparation and comparison of hydrophobic cotton fabric obtained by direct fluorination and admicellar polymerization of fluoromonomers. Ind Eng Chem Res 49:6075–6079

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Ouajai S, Shanks RA (2006) Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose. Cellulose 13:31–44

    Article  CAS  Google Scholar 

  • Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709

    Article  CAS  Google Scholar 

  • Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15:4981–4991

    Article  CAS  Google Scholar 

  • Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427

    Article  CAS  Google Scholar 

  • Peresin MS, Vesterinen AH, Habibi Y, Johansson LS, Pawlak JJ, Nevzorov AA, Rojas OJ (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J Appl Polym Sci. doi:10.1002/app.40334

    Google Scholar 

  • Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose Nanocrystals for Drug Delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials: performance by design. ACS, Washington, DC, pp 81–91

    Google Scholar 

  • Sato K, Mochizuki H, Okajima K, Yamane C (2004) Effects of hydrophobic solvents on X-ray diffraction patterns of regenerated cellulose membrane. Polym J 36:478–482

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478

    Article  CAS  Google Scholar 

  • Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51:2941–2951

    Article  CAS  Google Scholar 

  • Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195:121–129

    Article  CAS  Google Scholar 

  • Yuan HH, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Program on Key Basic Research Project (973 Program, No. 2011CB933700), the National Natural Science Foundation of China (51373191, 51043003), and the Chinese Academy of Sciences Visiting Professorships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wu or Yong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, X., Kuga, S., Wu, M. et al. Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22, 2341–2348 (2015). https://doi.org/10.1007/s10570-015-0659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0659-2

Keywords

Navigation