Log in

Diversified aeration facilities for effective aquaculture systems—a comprehensive review

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The growing intensive aquaculture system around the world maintains a high stocking density, wherein it is essential to increase and sustain the optimum dissolved oxygen concentration (DO) through the provision of artificial aeration systems. The selection of an aerator is a crucial aspect of aquaculture operations. The selected aerator must be economically efficient and should be able to fulfill the requirement of oxygen supply in the pond water. The present study provides an extensive literature review on the importance of artificial aeration in aquaculture, the standard method of test for performance evaluation of an aerator, various aeration systems and their mechanisms, method to determine the numbers of aerator requirement, comparative studies of different type of aerators, and economic consideration in selection of aerators. In addition, a thorough analysis has been done to suggest the type of aerator that is economically viable and efficient for different pond volumes based on the performance data reported in the reviews. Therefore, this study may help the end-users (fish farmers) to select the best aerator based on their requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Cross-sectional area through which diffusion occurs

AE:

Aeration efficiency in actual ponds

C:

Concentration of oxygen at time t

C :

Equilibrium liquid phase oxygen concentration

C0 :

Initial DO concentration

Cs :

Saturation concentration of pond water at T °C

CP :

Initial DO concentration in pond water at T °C

DO:

Dissolved oxygen concentration

De :

Eddy diffusion coefficient of the oxygen in the body of the liquid

Dg :

Molecular diffusion coefficient of oxygen through gas film

KLaT :

Overall oxygen transfer coefficient at T °C

KLa20 :

Overall oxygen transfer coefficient at 20 °C

T:

Temperature

θ:

Temperature correction factor

V:

Volume of water under aeration

SOTR:

Standard oxygen-transfer rate

SAE:

Standard aeration efficiency

P:

Input power to the aerator

PT :

Total power requirement for aeration

PVC:

Polyvinyl chloride

OTR:

Oxygen transfer rate

OTRf :

Actual oxygen transfer rate in pond

TOD:

Total oxygen demand

ODs :

Demand of oxygen by cultured species

ODp :

Plankton oxygen demand

ODb :

Benthos oxygen demand

NA :

Number of aerators

VOCs:

Volatile organic chemicals

ha:

Hectare

GDP:

Gross domestic product

CSC:

Circular stepped cascade

PCSC:

Pooled circular stepped cascade

PSA:

Pump-sprayer aerator

PWA:

Paddle wheel aerator

SA:

Spiral aerator

PAA:

Propeller aspirator aerator

SUBA:

Submersible aerator

VPA:

Vertical pump aerator

DA:

Diffused aerator

WA:

Weir aerator

SCA:

Stepped cascade aerator

References

  • Abeliovitch A (1967) Oxygen regime in Beit-Shean fish ponds related to summer mass fish mortalities. Preliminary observations. Bamidgeh 19:3–15

    Google Scholar 

  • Adel M, Shaalan MR, Kamal RM, El Monayeri DS (2019) A comparative study of impeller aerators configurations. Alex Eng J 58(4):1431–1438

    Article  Google Scholar 

  • Ahmad T, Boyd CE (1988) Design and performance of paddle wheel aerators. Aquac Eng 7(1):39–62

    Article  Google Scholar 

  • APHA (1980) American Water Works Association, and Pollution Control Federal (16th Ed.), Washington, DC

  • ASCE (1992) Measurement of oxygen transfer in clean water. Standard ASCE Committee on Oxygen Transfer, ASCE press, 47th St, New York.

  • ASCE (1993) Measurement of oxygen transfer in clean water, 2nd edn, New York

  • ASCE (1997) Standard guidelines for in-process oxygen transfer testing. New York.

  • ASCE (2007) Standard measurement of oxygen transfer in clean water. American Society of Civil Engineers, Virginia

    Book  Google Scholar 

  • Bahri S, Setiawan RPA, Hermawan W, Junior MZ (2018) The development of furrower model blade to paddlewheel aerator for improving aeration efficiency. In IOP conference series. Mater Sci Eng 1:352

    Google Scholar 

  • Banks RB, Sally LR, Polprasert C (1983) Mechanical mixing and surface reaeration. J Environ Eng ASCE 109(1):232–241

    Article  CAS  Google Scholar 

  • Baylar A, Bagatur T, Tuna A (2001) Aeration performance of triangular-notch weirs. Water Environ J 15(3):203–206

    Article  Google Scholar 

  • Baylar A, Emiroglu ME, Bagatur T (2006) An experimental investigation of aeration performance in stepped spillways. Water Environ J 20(1):35–42

    Article  Google Scholar 

  • Baylar A, Bagatur T, Emiroglu ME (2007a) Aeration efficiency with nappe flow over stepped cascades. Proc Inst Civ Eng Water Manage 160(1):43–50

    Article  Google Scholar 

  • Baylar A, Bagatur T, Emiroglu ME (2007b) Prediction of oxygen content of nappe, transition and skimming flow regimes in stepped-channel chutes. J Environ Eng Sci 6(2):201–208

    Article  CAS  Google Scholar 

  • Baylar A, Hanbay D, Ozpolat E (2008) Closure of ‘modeling aeration efficiency of stepped cascades by using ANFIS’, CLEAN - soil, air. Water 36(10-11):820

    CAS  Google Scholar 

  • Baylar A, Unsal M, Ozkan F (2010) Hydraulic structures in water aeration processes. Water Air Soil Pollut 210(1):87–100

    Article  CAS  Google Scholar 

  • Boyd CE (1982) Water quality management for pond fish culture, vol 318. Elsevier, Amsterdam

    Google Scholar 

  • Boyd CE (1998) Pond water aeration systems. Aquac Eng 18(1):9–40

    Article  Google Scholar 

  • Boyd CE, Ahmad T (1987) Evaluation of aerators for channel catfish farming, Alabama Agricultural Experiment Station. Auburn University, Auburn. Bulletin, p 584

    Google Scholar 

  • Boyd CE, Hanson T (2010) Dissolved oxygen concentrations in pond aquaculture. Global Aquaculture Alliance 40–41

  • Boyd CE, Martinson DJ (1984) Evaluation of propeller-aspirator-pump aerators. Aquaculture 36(3):283–292

    Article  Google Scholar 

  • Boyd CE, McNevin AA (2020) Aerator energy use in shrimp farming and means for improvement. J World Aquacult Soc:1–24

  • Boyd CE, Moore JM (1993) Factors affecting the performance of diffused-air aeration systems for aquaculture. J Appl Aquac 2(2):1–12

    Article  CAS  Google Scholar 

  • Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science & Business Media, Berlin

    Google Scholar 

  • Boyd CE, Watten BJ (1989) Aeration systems in aquaculture. CRC Critic Rev Aquatic Sci 22(1):425–472

    Google Scholar 

  • Boyd CE, Ahmad T, La-fa A (1988) Evaluation of plastic pipe, paddle wheel aerators. Aquac Eng 7(1):63–72

    Article  Google Scholar 

  • Busch RL, Tucker CS, Steeby JA, Reames JA (1984) An evaluation of three paddle wheel aerators used for emergency aeration of channel catfish ponds. Aquac Eng 3:59–69

    Article  Google Scholar 

  • Cancino (2004) Design of high efficiency surface aerators Part 2. Rating of surface aerator rotors. Aquac Eng 31(1):99–115

    Article  Google Scholar 

  • Cancino B, Roth P, Reu M (2004) Design of high efficiency surface aerators Part 1. Development of new rotors for surface aerators. Aquac Eng 31(1):83–98

    Article  Google Scholar 

  • Cheng X, **e Y, Zhu D, **e J (2019) Modeling re-oxygenation performance of fine-bubble–diffusing aeration system in aquaculture ponds. Aquac Int 27(5):1353–1368

    Article  CAS  Google Scholar 

  • Chesness JL, Stephens JL (1971) A model study of gravity flow aerators for catfish raceway systems. Trans ASAE 14(6):1167–1169

    Article  Google Scholar 

  • Colt J, Tchobanoglous G (1981) Design of aeration system for aquaculture. In: Allen LJ, Kinneys EC (eds) Proceedings of the bio-engineering symposium for fish culture. American Fisheries Society, Bethesda, pp 138–148

  • Delgado PC, Avnimelech Y, McNeil R, Bratvold D, Browdy CL, Sandifer P (2003) Physical, chemical and biological characteristics of distinctive regions in paddlewheel aerated shrimp ponds. Aquaculture 217(1-4):235–248

    Article  CAS  Google Scholar 

  • Doley H, Kumar A (2016) Development of inclined cascade aerator. KrishKosh.

  • Eckenfelder WW Jr, O'Connor (1961) Biological waste treatment. Pergamon Press, New York

    Google Scholar 

  • Elliott JW (1969) The oxygen requirements of Chinook salmon. Prog Fish Cult 31:67–73

    Article  Google Scholar 

  • Eltawil MA, ElSbaay AM (2016) Utilisation of solar photovoltaic pum** for aeration systems in aquaculture ponds. Int J Sustain Energy 35(7):629–644

    Article  Google Scholar 

  • Engle CR (1989) An economic comparison of aeration devices for aquaculture ponds. Aquac Eng 8(3):193–207

    Article  Google Scholar 

  • Engle CR (2010) Aquaculture economics and financing: management and analysis. Blackwell Scientific, Ames

    Book  Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all, Rome 200 pp

    Google Scholar 

  • Fast Arlo W, Tan Edmundo C, Stevens Desmond F, Olson Jeffrey C, Jianguang Q, Barclay David K (1999) Paddlewheel aerator oxygen transfer efficiencies at three salinities. Aquac Eng 19(2):99–103

    Article  Google Scholar 

  • FishStat FAO (2013) Fisheries and aquaculture software, FishStat Plus–Universal software for fishery statistical time series, vol 28. FAO Fisheries and Aquaculture Department, Rome, updated

    Google Scholar 

  • Gameson ALH (1957) Weirs and the aeration of rivers. J Inst Wat Engrs 11:477–490

    Google Scholar 

  • Ghomi MR, Sohrabnejad M, Ovissipour MR (2009) An experimental study of nozzle diameters, aeration depths and angles on standard aeration efficiency (SAE) in a venturi aerator. Water Pract Technol 4(3)

  • Hackney GE, Colt JE (1982) The performance and design of packed column aeration systems for aquaculture. Aquac Eng 1(4):275–295

    Article  Google Scholar 

  • Hahn F, Pérez R (2015) Design and evaluation of a dissolved oxygen controller for solar powered fish tanks. British J Appl Sci Technol 5(2):173–188

    Article  Google Scholar 

  • Is-haak J, Kaewnern M, Yoonpundh R, Taparhudee W (2020) Evaluation of oxygen budget and mechanical aeration requirements of red tilapia cage-culture in earthen ponds. Agric Nat Res 54(2):197–204

    Google Scholar 

  • Javornicky JA (1980) Density-dependent effects. In: LeCren ED, Lowe-McConnel RH (eds) The functioning of freshwater ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Jayanthi M, Balasubramaniam AAK, Suryaprakash S, Veerapandian N, Ravisankar T, Vijayan KK (2020) Assessment of standard aeration efficiency of different aerators and its relation to the overall economics in shrimp culture. Aquac Eng 92:102142

    Article  Google Scholar 

  • Jayraj P, Roy SM, Mukherjee CK, Mal BC (2018) Design characteristics of submersible aerator. Turk J Fish Aquat Sci 18(9):1017–1023

    Article  Google Scholar 

  • Jena JK, Aravindakshan PK, Mohanty UK (2005) Evaluation of growth and survival of Indian major carp fry in aerated vis-a-vis non aerated ponds under different stocking densities. Indian J Fish 52(2):197–205

    Google Scholar 

  • Jiang P, Stenstrom MK (2012) Oxygen transfer parameter estimation: impact of methodology. J Environ Eng 138(2):137–142

    Article  CAS  Google Scholar 

  • Khound A, Yadav A, Sarkar S, Kumar A (2017) Influence of throat length and flow parameters on a venturi as an aerator. Int J Agric Environ Biotechnol 10(6):717–724

    Article  Google Scholar 

  • Kobayashi M, Msangi S, Batka M, Vannuccini S, Dey MM, Anderson JL (2015) Fish to 2030: the role and opportunity for aquaculture. Aquac Econ Manag 19(3):282–300

    Article  Google Scholar 

  • Kumar A, Moulick S, Mal BC (2010) Performance evaluation of propeller-aspirator pump aerator. Aquac Eng 42(2):70–74

    Article  Google Scholar 

  • Kumar A, Moulick S, Singh BK, Mal BC (2013a) Design characteristics of pooled circular stepped cascade aeration system. Aquac Eng 56:51–58

    Article  Google Scholar 

  • Kumar A, Moulick S, Mal BC (2013b) Selection of aerators for intensive aquacultural pond. Aquac Eng 56:71–78

    Article  Google Scholar 

  • Laws EA, Malecha S (1981) Application of a nutrient-saturated growth model to phyto-plankton management in freshwater prawn (Mucrobrachium Fosenbergii) ponds in Hawaii. Aquaculture 24:91–101

    Article  CAS  Google Scholar 

  • Lawson (1995) Fundamentals of aquacultural engineering. Chapman & Hall, New York

    Book  Google Scholar 

  • Lewis WW, Whiteman WG (1924) Principles of gas absorption. Ind Eng Chem 16(2):1215–1220

    Article  CAS  Google Scholar 

  • Mahmud R, Erguvan M, MacPhee DW (2020) Performance of closed loop venturi aspirated aeration system: experimental study and numerical analysis with discrete bubble model. Water 2(6):16–37

    Google Scholar 

  • Marappan J, Ambattaiyanpatti AB, Thiagarajan R, Muthusamy D, Moturi M, Bera A, Ramasamy P (2020) Assessment of the new generation aeration systems efficiency and water current flow rate, its relation to the cost economics at varying salinities for Penaeus vannamei culture. Aquac Res 51:2112–2124

    Article  Google Scholar 

  • Meade JW (1985) Allowable ammonia for fish culture. Prog Fish Culture 47:135–145

    Article  CAS  Google Scholar 

  • Metcalf L, Eddy HP, Tchobanoglous G (1979) Wastewater engineering: treatment, disposal, and reuse. McGraw-Hill, New York

    Google Scholar 

  • Mohammadpour A, AkhavanBehabadi MA, Ebrahimzadeh M, Raisee M, MajdiNasab AR, Nosrati M, Mousavi SM (2016) Optimization of energy consumption and mass transfer parameters in a surface aeration vessel. Water Environ Res 88(4):355–366

    Article  CAS  PubMed  Google Scholar 

  • Mohd Remy Rozainy MAZ, RhahimiJamiland MNA (2015) A Review of removal iron and manganese by using cascade aeration systems. Jurnal Teknologi, (Sciences & Engineering) 74(11):69–76

    Google Scholar 

  • Moore JM, Boyd CE (1992) Design of small paddle wheel aerators. Aquac Eng 11(1):55–69

    Article  Google Scholar 

  • Moulick S, Mal BC (2009) Performance evaluation of double hub paddle wheel aerator. J Environ Eng 135(7):562–566

    Article  CAS  Google Scholar 

  • Moulick S, Mal BC, Bandyopadhyay S (2002) Prediction of aeration performance of paddle wheel aerators. Aquac Eng 25(4):217–237

    Article  Google Scholar 

  • Moulick S, Bandyopadhyay S, Mal BC (2005) Design characteristics of single hub paddle wheel aerator. J Environ Eng 131(8):1147–1154

    Article  CAS  Google Scholar 

  • Moulick S, Tambada NV, Singh BK, Mal BC (2009) Aeration characteristics of a rectangular stepped cascade system. Water Sci Technol 61(2):415–420

    Article  Google Scholar 

  • Navisa J, Sravya T, Swetha M, Venkatesan M (2014) Effect of bubble size on aeration process. Asian J Sci Res 7(4):482–487

    Article  Google Scholar 

  • Nguyen NT, Matsuhashi R, Vo TTBC (2020) A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renew Energy 163:1878–1894

    Article  Google Scholar 

  • Omofunmi OE, Adewumi JK, Adisa AF, Alegbeleye SO (2016) Performance evaluation of a developed paddle aerator on catfish effluents in lagos state, nigeria. J Agric Sci Environ 16(1):75–85

    Google Scholar 

  • Peterson EL, Patterson JC (2000) Energy auditing aquaculture facilities. In: 3rd Queensland environmental conference-sustainable environmental solutions for industry and government, 25 and 26 May 2000, Brisbane, 177–181

  • Peterson EL, Pearson D (2002) Round peg in a square hole: aeration in a square shrimp pond. Global Aquaculture Advocate 3(5):44–46

    Google Scholar 

  • Rao AR (1999) Prediction of reaeration rates in square, stirred tanks. J Environ Eng ASCE 125(3):215–223

    Article  CAS  Google Scholar 

  • Rappaport U, Sarig S, Marek M (1976) Results of tests of various aeration systems on the oxygen regime in the genosar experimental ponds and growth of fish therein. Bamidgeh 28:35–49

    Google Scholar 

  • Rathinakumar V, Dhinakaran G, Suribabu CR (2017) Effect of hydraulic and geometrical properties on stepped cascade aeration system. J Eng Sci Technol 12(3):756–766

    Google Scholar 

  • Rogers GL (1989) Aeration and circulation for effective aquaculture pond management. Aquac Eng 8:349–355

    Article  Google Scholar 

  • Roy SM, Moulick S, Mukherjee CK, Mal BC (2015) Effect of rotational speeds of paddle wheel aerator on aeration cost. J Am Res Thoughts 2(1):3069–3087

    Google Scholar 

  • Roy SM, Moulick S, Mal BC (2017) Design characteristics of spiral aerator. J World Aquacult Soc 48(6):898–908

    Article  CAS  Google Scholar 

  • Roy SM, Moulick S, Mukherjee CK (2020a) Design characteristics of perforated pooled circular stepped cascade (PPCSC) aeration system. Water Supply 20(5):1692–1705

    Article  Google Scholar 

  • Roy SM, Tanveer M, Mukherjee CK, Mal BC (2020b) Design characteristics of perforated tray aerator. Water Supply 20(5):1643–1652

    Article  Google Scholar 

  • Rümmler F (1992) Beurteilung des Sauerstoffeintrags von Belüuftern. Fischer Teichwirt 2:5354

    Google Scholar 

  • Ruttanagosrigit W, Musig Y, Boyd CE, Sukchareon L (1991) Effect of salinity onoxygen transfer by propeller-aspirator-pump and paddle wheel aerators usedin shrimp farming. Aquac Eng 10(2):121–131

    Article  Google Scholar 

  • Sengupta S, Jana BB (1987) Effect of aeration on the primary productivity of phytoplankton in experimental tanks. Aquaculture 62(2):131–141

    Article  Google Scholar 

  • Shelton JL, Boyd CE (1983) Correction factors for calculating oxygen-transfer rates for pond aerators. Trans Am Fish Soc 112:120–122

    Article  Google Scholar 

  • Simha LU (1991) Experimental studies on overall oxygen transfer coefficient, Ph.D. thesis, Department of Civil Engineering, Indian Institute of Science, Bangalore, India, 187

  • Sin AW, Chi MT (1982) Summer and winter kills in fish ponds of Hong Kong and their possible prediction. Aquaculture 29:125–135

    Article  Google Scholar 

  • Singh BK (2010) Design characteristics of circular stepped cascade pump aeration system. Ph.D Thesis, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, India.

  • Smith DW, Piedrahita RH (1988) The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture 68:249–265

    Article  Google Scholar 

  • Soderberg RW (1982) Aeration of water supplies for fish culture in flowing water. Progress Fish Culturist 44(2):89–93

    Article  Google Scholar 

  • Soderberg R (2017) Aquaculture technology: flowing water and static water fish culture. CRC Press, Boca Raton

    Book  Google Scholar 

  • Stenstrom MK, Gilbert RG (1981) Effects of alpha, beta and theta factor upon the design, specification and operation of aeration systems. Water Res 15(6):643–654

    Article  CAS  Google Scholar 

  • Stenstrom MK, Leu S-Y(B), Jiang P (2006) Theory to practice: oxygen transfer and the new ASCE standard. Proc Water Environ Fed 15:4838–4852

    Article  Google Scholar 

  • Tanveer M, Roy SM, Vikneswaran M, Renganathan P, Balasubramanian S (2018) Surface aeration systems for application in aquaculture: a review. Int J Fish Aquatic Stud 6(5):342–347

    Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel DH (2003) Wastewater engineering: treatment and reuse, 4th edn. Metcalf & Eddy Inc., McGraw-Hill, New York

    Google Scholar 

  • Tewari PK, Bewtra JK (1982) Alpha and beta factors for domestic wastewater. J Water Pollut Control Fed:1281–1128

  • Thakre SB, Bhuyar LB, Deshmukh SJ (2008) Effect of different configurations of mechanical aerators on oxygen transfer and aeration efficiency with respect to power consumption. Int J Aerosp Mech Eng 2(2):100–108

    Google Scholar 

  • Thakre SB, Bhuyar LB, Deshmukh SJ (2009) Oxidation ditch process using curved blade rotor as aerator. Int J Environ Sci Technol 6(1):113–122

    Article  CAS  Google Scholar 

  • Tien NN, Matsuhashi R, Chau VTTB (2019) A sustainable energy model for shrimp farms in the Mekong Delta. Energy Procedia 157:926–938

    Article  Google Scholar 

  • Timmons MB, Ebeling JM, Wheaton FW, Summerfelt ST, Vinci BJ (2002) Recirculating aquaculture systems, 2nd edn. NRAC Publication, College Park, pp 1–2

    Google Scholar 

  • Toombes L, Chanson H (2005) Air-water mass transfer on a stepped waterway. J Environ Eng 131(10):1377–1386

    Article  CAS  Google Scholar 

  • Torrans EL, Hogue CD Jr, Pilkinton S (2003) The sock-saver: A small trailer for providing liquid oxygen to remote sites on commercial channel catfish farms. N Am J Aquac 65:260–265

    Article  Google Scholar 

  • Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, Arrow KJ, Barrett S, Crépin AS, Ehrlich PR, Gren Å (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci 111(37):13257–13263

    Article  CAS  PubMed  Google Scholar 

  • Vinatea L, Carvalho JW (2007) Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs. Aquac Eng 37(2):73–78

    Article  Google Scholar 

  • Wagner M (1997) Sauerstoffeintrag und Sauerst offertrag von Belüftungs system enund deren BestimmungmitmodernenMessmethoden. Vereinzur Förderung des Inst. WAR.

  • Wagner MR, Pöpel HJ (1998) Oxygen transfer and aeration efficiency—influence of diffuser submergence, diffuser density, and blower type. Water Sci Technol 38(3):1–6

    Article  CAS  Google Scholar 

  • Wedemeyer G (1996) Physiology of fish in intensive culture systems. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Wormleaton PR, Soufiani E (1998) Aeration performance of triangular planform labyrinth weirs. J Environ Eng 124(8):709–719

    Article  CAS  Google Scholar 

  • Wormleaton PR, Tsang CC (2000) Aeration performance of rectangular planform labyrinth weirs. J Environ Eng 126(5):456–465

    Article  CAS  Google Scholar 

  • Xu X, Wei W, Liu F, Wei W, Liu Z (2020) Experimental study on aeration efficiency in a pilot-scale decelerated oxidation ditch equipped with fine bubble diffusers and impellers. The Canadian J Chem Eng 1– 11

  • Yadav A, Sarkar S, Kumar A (2019) Design characteristics of Venturi aeration system. Int J Innov Technol Explor Eng (IJITEE) 8(11):63–70

    Article  Google Scholar 

  • Yadav A, Kumar A, Sarkar S (2020) An experimental study to evaluate the efficacy of air entrainment holes on the throat of a venturi aeration system. Aquac Int 28:1057–1068

    Article  Google Scholar 

  • Zhang C, Song B, Shan J, Ni Q, Wu F, Wang S (2020) Design and optimization of a new tube aeration device. Aquac Int 28:985–999

    Article  Google Scholar 

Download references

Acknowledgements

The first, second, and fourth authors express their gratitude to MHRD, Govt. of India for providing fellowship during the study. We gratefully acknowledge the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha M. Roy.

Ethics declarations

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Michael Hartnett

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 8 Variation of total number of aerators (NA) with different splash aerators and pond volume

Appendix 2

Table 9 Variation of total number of aerators (NA) with different bubbling aerators and pond volume

Appendix 3

Table 10 Variation of total number of aerators (NA) with different gravity aerators and pond volume

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.M., P, J., Machavaram, R. et al. Diversified aeration facilities for effective aquaculture systems—a comprehensive review. Aquacult Int 29, 1181–1217 (2021). https://doi.org/10.1007/s10499-021-00685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00685-7

Keywords

Navigation