Log in

Hydraulic Structures in Water Aeration Processes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. This paper reviewed the literature on hydraulic structures used in water aeration processes. The hydraulic structures were divided into two groups as the high-head flow systems and the free-surface flow systems. The high-head flow systems were circular and venturi nozzles, pipe with venturi tube, and high-head conduit, and the free-surface flow systems were weir, stepped cascade, and free-surface conduit. Air/water flow ratio and aeration efficiency in circular nozzles with air holes and venturi nozzles were significantly high. Pipes with venturi tubes showed high aeration efficiency although they had low air/water flow ratio. In high-head and free-surface conduits, almost full oxygen transfer, up to the saturation value, occurred. Forty-five degrees triangular sharp-crested weir had significantly better air/water flow ratio and aeration efficiency than other sharp-crested weir shapes. Stepped cascades, in particular nappe flow regime, were very efficient means of aeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Ahmed, A. (1974). Aeration by plunging liquid jet. Ph.D. Thesis, Loughborough University of Technology.

  • Apted, R. W., & Novak, P. (1973). Some studies of oxygen uptake at weirs. Proc. of the XV Congress, IAHR Paper B23, Istanbul, 177−186.

  • Avery, S., & Novak, P. (1978). Oxygen transfer at hydraulic structures. Journal of Hydraulic Div ASCE, 104(11), 1521–1540.

    Google Scholar 

  • Bagatur, T., Baylar, A., & Sekerdag, N. (2002). The effect of nozzle type on air entrainment by plunging water jets. Water Quality Research Journal of Canada, 37(3), 599–612.

    CAS  Google Scholar 

  • Baylar, A. (2003). An investigation on the use of venturi weirs as an aerator. Water Quality Research Journal of Canada, 38(4), 753–767.

    CAS  Google Scholar 

  • Baylar, A., & Bagatur, T. (2000). Aeration performance of weirs. Water SA, 26(4), 521–526.

    Google Scholar 

  • Baylar, A., & Bagatur, T. (2001a). Oxygen transfer efficiency: Aeration performance of weirs. Water Engineering & Management, Part: 1, 148(3), 33–36.

    Google Scholar 

  • Baylar, A., & Bagatur, T. (2001b). Oxygen transfer efficiency: Aeration performance of weirs. Water Engineering & Management, Part: 2, 148(4), 14–16.

    Google Scholar 

  • Baylar, A., & Bagatur, T. (2006). Experimental studies on air entrainment and oxygen content downstream of sharp-crested weirs. Water and Environment Journal, 20(4), 210–216.

    Article  CAS  Google Scholar 

  • Baylar, A., & Emiroglu, M. E. (2002). The effect of sharp-crested weir shape on air entrainment. Canadian Journal of Civil Engineering, 29(3), 375–383.

    Article  Google Scholar 

  • Baylar, A., & Emiroglu, M. E. (2003a). Air entrainment and oxygen transfer in a venturi. Proceedings of the Institution of Civil Engineers—Water & Maritime Engineering, 156(WM3), 249–255.

    Google Scholar 

  • Baylar, A., & Emiroglu, M. E. (2003b). Study of aeration efficiency at stepped channels. Proceedings of the Institution of Civil Engineers—Water & Maritime Engineering, 156(WM3), 257–263.

    Google Scholar 

  • Baylar, A., & Emiroglu, M. E. (2004). An experimental study of air entrainment and oxygen transfer at a water jet from a nozzle with air holes. Water Environment Research, 76(3), 231–237.

    Article  CAS  Google Scholar 

  • Baylar, A., & Emiroglu, M. E. (2005). Closure of 'Study of aeration efficiency at stepped channels. Proceedings of the Institution of Civil Engineers—Water Management, 158(WM2), 89–90.

    Google Scholar 

  • Baylar, A., & Ozkan, F. (2006). Applications of venturi principle to water aeration systems. Environmental Fluid Mechanics, 6(4), 341–357.

    Article  CAS  Google Scholar 

  • Baylar, A., Bagatur, T., & Tuna, A. (2001a). Aeration performance of triangular notch weirs at recirculating system. Water Quality Research Journal of Canada, 36(1), 121–132.

    CAS  Google Scholar 

  • Baylar, A., Bagatur, T., & Tuna, A. (2001b). Aeration performance of triangular-notch weirs. Journal of the Chartered Institution of Water and Environmental Management, 15(3), 203–206.

    Article  Google Scholar 

  • Baylar, A., Ozkan, F., & Ozturk, M. (2005). Influence of venturi cone angles on jet aeration systems. Proceedings of the Institution of Civil Engineers—Water Management, 158(WM1), 9–16.

    Google Scholar 

  • Baylar, A., Emiroglu, M. E., & Bagatur, T. (2006). An experimental investigation of aeration performance in stepped spillways. Water and Environment Journal, 20(1), 35–42.

    Article  Google Scholar 

  • Baylar, A., Bagatur, T., & Emiroglu, M. E. (2007a). Aeration efficiency with nappe flow over stepped cascades. Proceedings of the Institution of Civil Engineers—Water Management, 160(1), 43–50.

    Google Scholar 

  • Baylar, A., Bagatur, T., & Emiroglu, M. E. (2007b). Prediction of oxygen content of nappe, transition and skimming flow regimes in stepped-channel chutes. Journal of Environmental Engineering and Science, 6(2), 201–208.

    Article  CAS  Google Scholar 

  • Baylar, A., Hanbay, D., & Ozpolat, E. (2007c). Modeling aeration efficiency of stepped cascades by using ANFIS. CLEAN—Soil, Air, Water, 35(2), 186–192.

    Article  CAS  Google Scholar 

  • Baylar, A., Ozkan, F., & Unsal, M. (2007d). On the use of venturi tubes in aeration. CLEAN—Soil, Air, Water, 35(2), 183–185.

    Article  CAS  Google Scholar 

  • Baylar, A., Unsal, M., & Ozkan, F. (2007e). Determination of the optimal location of the air hole in venturi aerators. CLEAN—Soil, Air, Water, 35(3), 246–249.

    Article  CAS  Google Scholar 

  • Baylar, A., Hanbay, D., & Ozpolat, E. (2008a). An expert system for predicting aeration performance of weirs by using ANFIS. Expert Systems with Applications, 35(3), 1214–1222.

    Article  Google Scholar 

  • Baylar, A., Hanbay, D., & Ozpolat, E. (2008b). Closure of modeling aeration efficiency of stepped cascades by using ANFIS. CLEAN—Soil, Air, Water, 36(10–11), 820.

    Article  CAS  Google Scholar 

  • Baylar, A., Aydın, M. C., Unsal, M., & Ozkan, F. (2009a). Numerical modeling of venturi flows for determining air injection rates using FLUENT V6.2. Mathematical and Computational Applications, 14(2), 97–108.

    Google Scholar 

  • Baylar, A., Hanbay, D., & Batan, M. (2009b). Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs. Expert Systems with Applications, 36(4), 8368–8374.

    Article  Google Scholar 

  • Bin, A. K. (1993). Gas entrainment by plunging liquid jets. Chemical Engineering Science, 48(21), 3585–3630.

    Article  CAS  Google Scholar 

  • Campbell, F. B., & Guyton, B. (1953). Air demand in gated outlet works, Proceedings of the 5th Congress of the International Association of Hydraulic Research, Minneapolis, Minnesota, 529–533.

  • Chanson, H. (2002). The hydraulics of stepped chutes and spillways. Lisse: Balkema.

    Google Scholar 

  • Chanson, H., & Toombes, L. (2000). Discussion of Stream reaeration in nonuniform flow: Macroroughness enhancement. Journal of Hydraulic Engineering ASCE, 126(3), 222–224.

    Article  Google Scholar 

  • Chanson, H., & Toombes, L. (2002). Experimental study of gas−liquid interfacial properties in a stepped cascade flow. Environmental Fluid Mechanics, 2(3), 241–263.

    Article  CAS  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003a). An investigation of effect of stepped chutes with end sill on aeration performance. Water Quality Research Journal of Canada, 38(3), 527–539.

    CAS  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003b). Study of aeration performance of open channel chutes equipped with a flip bucket. Turkish Journal of Engineering & Environmental Sciences, 27(3), 189–200.

    Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003c). Experimental study of the influence of different weir types on the rate of air entrainment. Water Quality Research Journal of Canada, 38(4), 769–783.

    CAS  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003d). Role of nozzles with air holes in air entrainment by a water jet. Water Quality Research Journal of Canada, 38(4), 785–795.

    CAS  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003e). The effect of broad-crested weir shape on air entrainment. Journal of Hydraulic Research, 41(6), 649–655.

    Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2003f). Study of the influence of air holes along length of convergent−divergent passage of a venturi device on aeration. Journal of Hydraulic Research, 41(5), 513–520.

    Article  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2005). Influence of included angle and sill slope on air entrainment of triangular planform labyrinth weirs. Journal of Hydraulic Engineering ASCE, 131(3), 184–189.

    Article  Google Scholar 

  • Emiroglu, M. E., & Baylar, A. (2006). Closure of 'Influence of included angle and sill slope on air entrainment of triangular planform labyrinth weirs'. Journal of Hydraulic Engineering ASCE, 132(7), 747–748.

    Article  Google Scholar 

  • Essery, I. T. S., Tebbutt, T. H. Y., & Rasaratnam, S. K. (1978). Design of spillways for reaeration of polluted waters, Rep. 72. London: CIRIA.

    Google Scholar 

  • Evans, G. M., Jameson, G. J., & Rielly, C. D. (1996). Free jet expansion and gas entrainment characteristics of a plunging liquid jet. Experimental Thermal and Fluid Science, 12(2), 142–149.

    Article  Google Scholar 

  • Gameson, A. L. H. (1957). Weirs and aeration of rivers. Journal of the Institution of Water Engineers, 11(6), 477–490.

    Google Scholar 

  • Gulliver, J. S., Thene, J. R., & Rindels, A. J. (1990). Indexing gas transfer in self-aerated flows. Journal of Environmental Engineering ASCE, 116(3), 503–523.

    Article  CAS  Google Scholar 

  • Haindl, K., & Sotornik, V. (1957) Quantity of air drawn into a conduit by the hydraulic jump and its measurement by gamma−radiation. Proceedings of the 7th Congress of the International Association of Hydraulic Research, Vol. II. Lisbon: Portugal.

  • Hanbay, D., Baylar, A., & Batan, M. (2009a). Prediction of aeration efficiency on stepped cascades by using least square support vector machines. Expert Systems with Applications, 36, 4248–4252.

    Article  Google Scholar 

  • Hanbay, D., Baylar, A., & Ozpolat, M. (2009b). Predicting flow conditions over stepped chutes based on ANFIS. Soft Computing, 13(7), 701–707.

    Article  Google Scholar 

  • Harshbarger, E. D., Vigander, S., & Hecker, G. E. (1977). Discussion of air-entrainment in high head gated conduits. Journal of Hydraulic Division ASCE, 103(12), 1486–1488.

    Google Scholar 

  • Kalinske, A. A., & Robertson, J. M. (1943). Closed conduit flow, transactions of the symposium on entrainment of air in flowing water, ASCE, 108, No. 2205, 1435−1447.

  • Kusabiraki, D., Murota, M., Ohno, S., Yamagiwa, K., Yasuda, M., & Ohkawa, A. (1990a). Gas entrainment rate and flow pattern in a plunging liquid jet aeration system using inclined nozzles. Journal of Chemical Engineering of Japan, 23(6), 704–710.

    Article  CAS  Google Scholar 

  • Kusabiraki, D., Niki, H., Yamagiwa, K., & Ohkawa, A. (1990b). Gas entrainment rate and flow pattern of vertical plunging liquid jets. Canadian J Chem Eng, 68(6), 893–903.

    Article  CAS  Google Scholar 

  • Labocha, M., Corsi, R. L., & Zytner, R. G. (1996). Parameters influencing oxygen uptake at clarifier weirs. Water Environment Research, 68(6), 988–994.

    Article  CAS  Google Scholar 

  • Lysne, D. K., & Guttormsen, O. (1971). Air demand in high regulated outlet works. Proceedings of the 14th Congress of the International Association of Hydraulic Research, Vol. 5. Paris: France.

  • McKeogh, E. J., & Ervine, D. A. (1981). Air entrainment rate and diffusion pattern of plunging liquid jets. Chemical Engineering Science, 36(7), 1161–1172.

    Article  CAS  Google Scholar 

  • Mura, Y., Ijuin, S., & Nakagawa, H. (1959). Air demand in conduits partly filled with flowing water. proceedings of the 8th congress of the international association of hydraulic research (Vol. 2). Canada: Montreal.

    Google Scholar 

  • Nakasone, H. (1987). Study of aeration at weirs and cascades. Journal of Environmental Engineering ASCE, 113(1), 64–81.

    Article  CAS  Google Scholar 

  • Novak, P. (1994). Improvement of water quality in rivers by aeration at hydraulic structure. In M. Hino (Ed.), Water quality and its control. Madrid: International Association of Hydraulic Research.

    Google Scholar 

  • Oguz, H. N. (1998). Role of surface disturbances in the entrainment of bubbles by a liquid jet. Journal Fluids Mechanism, 372, 189–212.

    Article  CAS  Google Scholar 

  • Ohl, C. D., Oguz, H. N., & Prosperetti, A. (2000). Mechanism of air entrainment by a disturbed liquid jet. Physics of Fluids, 12(7), 1710–1714.

    Article  CAS  Google Scholar 

  • Ozkan, F., Baylar, A., & Ozturk, M. (2006a). Air entraining and oxygen transfer in high-head gated conduits. Proceedings of the Institution of Civil Engineers—Water Management, 159(2), 139–143.

    Google Scholar 

  • Ozkan, F., Ozturk, M., & Baylar, A. (2006b). Experimental investigations of air and liquid injection by venturi tubes. Water and Environment Journal, 20(3), 114–122.

    CAS  Google Scholar 

  • Ozkan, F., Baylar, A., & Ozturk, M. (2009). Closure of air entraining and oxygen transfer in high-head gated conduits. Proceedings of the Institution of Civil Engineers— Water Management. (in press).

  • Sene, K. J. (1988). Air entrainment by plunging jets. Chemical Engineering Science, 43(10), 2615–2623.

    Article  CAS  Google Scholar 

  • Sharma, H. R. (1976). Air-entrainment in high head gated conduits. Journal of Hydraulic Division, ASCE, 102(HY11), 1629–1646.

    Google Scholar 

  • Speerli, J., & Hager, W. H. (2000). Air−water flow in bottom outlets. Canadian Journal of Civil Engineering, 27(3), 454–462.

    Article  Google Scholar 

  • Tebbutt, T. H. Y., Essery, I. T. S., & Rasaratnam, S. K. (1977). Reaeration performance of stepped cascades. Journalof the Institution of Water Engineering Science, 31(4), 285–297.

    CAS  Google Scholar 

  • Thene, J. R. (1988). Gas transfer at weirs using the hydrocarbon gas tracer method with headspace analysis. MSc Thesis, University of Minnesota, Minneapolis.

  • Toombes, L., & Chanson, H. (2000). Air−water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes (pp. 77–84). Zurich, Switzerland: Proceedings of the International Workshop on Hydraulics of Stepped Spillways.

    Google Scholar 

  • United States Army Corps of Engineers. (1964). Hydraulic design criteria: Air demand-regulated outlet works.

  • Unsal, M., Baylar, A., Tugal, M., & Ozkan, F. (2008). Increased aeration efficiency of high-head conduit flow systems. Journal of Hydraulic Research, 46(5), 711–714.

    Article  Google Scholar 

  • Unsal, M., Baylar, A., Tugal, M., & Ozkan, F. (2009). Aeration efficiency of free-surface conduit flow systems. Environmental Technology. doi:10.1080/09593330903252232.

  • van de Sande, E., & Smith, J. M. (1973). Surface entrainment of air by high velocity water jets. Chemical Engineering Science, 28(5), 1161–1168.

    Article  Google Scholar 

  • van de Sande, E., & Smith, J. M. (1976). Jet break-up and air entrainment by low velocity turbulent water jets. Chemical Engineering Science, 31(3), 219–224.

    Article  Google Scholar 

  • Van der Kroon, G. T. N., & Schram, A. H. (1969a). Weir aeration—Part I H2O, 22, 528–537.

    Google Scholar 

  • Van der Kroon, G. T. N., & Schram, A. H. (1969b). Weir aeration—Part II H2O, 22, 538–545.

    Google Scholar 

  • Wormleaton, P. R., & Soufiani, E. (1998). Aeration performance of triangular planform labyrinth weirs. Journal of Environmental Engineering ASCE, 124(8), 709–719.

    Article  CAS  Google Scholar 

  • Wormleaton, P. R., & Tsang, C. C. (2000). Aeration performance of rectangular planform labyrinth weirs. Journal of Environmental Engineering ASCE, 126(5), 456–465.

    Article  CAS  Google Scholar 

  • Yamagiwa, K., Ito, A., Tajima, K., Yoshida, M., & Ohkawa, A. (2000). Effect of nozzle contraction angle on air entrainment rate of a vertical plunging liquid jet. Journal of Chemical Engineering of Japan, 33(5), 805–807.

    Article  CAS  Google Scholar 

  • Yamagiwa, K., Ito, A., Kato, Y., Yoshida, M., & Ohkawa, A. (2001). Effects of liquid property on air entrainment and oxygen transfer rates of plunging jet reactor. Journal of Chemical Engineering of Japan, 34(4), 506–512.

    Article  CAS  Google Scholar 

  • Zhu, Y., Oguz, H. N., & Prosperetti, A. (2000). On the mechanism of air entrainment by liquid jets at a free surface. Journal Fluids Mechanism, 404, 151–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Baylar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylar, A., Unsal, M. & Ozkan, F. Hydraulic Structures in Water Aeration Processes. Water Air Soil Pollut 210, 87–100 (2010). https://doi.org/10.1007/s11270-009-0226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0226-2

Keywords

Navigation