Log in

Ischemic optic neuropathies and their models: disease comparisons, model strengths and weaknesses

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Ischemic optic neuropathies (IONs) describe a group of diseases that specifically target the optic nerve and result in sudden vision loss. These include nonarteritic and arteritic anterior ischemic optic neuropathy (NAION and AAION) and posterior ischemic optic neuropathy (NPION, APION). Until recently, little was known of the mechanisms involved in ION damage, due to a lack of information about the mechanisms associated with these diseases. This review discusses the new models that closely mimic these diseases (rodent NAION, primate NAION, rodent PION). These models have enabled closer dissection of the mechanisms involved with the pathophysiology of these disorders and enable identification of relevant mechanisms and potential pathways for effective therapeutic intervention. Descriptions of the different models are included, and comparisons between the models, their relative similarities with the clinical disease, as well as differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold AC. Ischemic optic neuropathies. Ophthalmol Clin North Am. 2001;14:83–98.

    CAS  PubMed  Google Scholar 

  2. Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye (Lond). 1969;18:1188–206.

    Article  Google Scholar 

  3. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.

    Article  CAS  PubMed  Google Scholar 

  4. Cioffi GA, Van Buskirk EM. Microvasculature of the anterior optic nerve. Surv Ophthalmol. 1994;38(Suppl):S107.

    Article  PubMed  Google Scholar 

  5. Morrison JC, Johnson EC, Cepurna WO, Funk RH. Microvasculature of the rat optic nerve head. Invest Ophthalmol Vis Sci. 1999;1999(40):1702–9.

    Google Scholar 

  6. Sadun AA. The afferent visual system: anatomy and physiology. In:Yanoff M, Duker JS, (eds). Ophthalmology. London:Mosby; 1999. p. 21–24

  7. May CA, Lutjen-Drecoll E. Morphology of the murine optic nerve. Invest Ophthalmol Vis Sci. 2002;43:2206–12.

    PubMed  Google Scholar 

  8. Albrecht MC. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J. 2008;2:94–101.

    Article  Google Scholar 

  9. Morrison J, Farrell S, Johnson E, Deppmeier L, Moore CG, Grossmann E. Structure and composition of the rodent lamina cribrosa. Exp Eye Res. 1995;60:127–35.

    Article  CAS  PubMed  Google Scholar 

  10. Sun D, Lye-Barthel M, Masland RH, Jakobs TC. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol. 2009;516:1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Olver JM, Spalton DJ, McCartney AC. Microvascular study of the retrolaminar optic nerve in man: the possible significance in anterior ischaemic optic neuropathy. Eye. 1990;4:7–24.

    Article  PubMed  Google Scholar 

  12. Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the human optic nerve. Am J Ophthalmol. 1995;120:92–102.

    Article  CAS  PubMed  Google Scholar 

  13. May CA, Lutjen-Drecoll E. Morphology of the murine optic nerve. Invest Ophthalmol Vis Sci. 2002;43:2206–12.

    PubMed  Google Scholar 

  14. Isayama Y, Hiramatsu K, Asakura S, Takahashi T. Posterior ischemic optic neuropathy. I. Blood supply of the optic nerve. Ophthalmologica. 1983;186:197–203.

    Article  CAS  PubMed  Google Scholar 

  15. Hayreh SS. In vivo choroidal circulation and its watershed zones. Eye. 1990;4:273–89.

    Article  PubMed  Google Scholar 

  16. Arnold AC, Hepler RS. Fluorescein angiography in acute nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;117:222–30.

    Article  CAS  PubMed  Google Scholar 

  17. Eagling EM, Sanders MD, Miller JH. Ischaemic papillopathy. Brit J Ophth. 1974;58:990–1008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. IONDT study group. Characteristics of patients with nonarteritic anterior ischemic optic neuropathy eligible for the ischemic optic neuropathy decompression trial. Arch Ophthalmol. 1996;114:1366–74.

    Article  Google Scholar 

  19. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117:603–24.

    Article  CAS  PubMed  Google Scholar 

  20. Bellusci C, Savini G, Carbonelli M, Carelli V, Sadun AA, Barboni P. Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol. 2008;246:641–7.

    Article  PubMed  Google Scholar 

  21. IONDT study group. Ischemic optic neuropathy decompression trial: twenty-four-month update. Arch Ophthalmol. 2000;118:793–8.

    Article  Google Scholar 

  22. Isayama Y, Takahashi T. Posterior ischemic optic neuropathy. II. Histopathology of the idiopathic form. Ophthalmologica. 1983;187:8.

    Article  CAS  PubMed  Google Scholar 

  23. Boor K, Kovacs K, Rozsa A, Panczel G, Szilvassy I, Gacs G. Posterior ischaemic optic neuropathy. Ideggyogy Sz. 2009;62:191–4 (in Hungarian).

    PubMed  Google Scholar 

  24. Postoperative Visual Loss Study Group. Risk factors associated with ischemic optic neuropathy after spinal fusion surgery. Anesthesiology. 2012;116:15–24.

    Google Scholar 

  25. McLeod D, Hayreh SS. Occlusion of posterior ciliary artery. IV. Electroretinographic studies. Br J Ophthalmol. 1972;56:765–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hayreh SS, Baines JAB. Occlusion of the posterior ciliary artery. III. Effects on the optic nerve head. Br J Ophthalmol. 1972;56:754–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hayreh SS. Anterior ischaemic optic neuropathy. II. Fundus on ophthalmoscopy and fluorescein angiography. Brit J Ophtalmol. 1974;58:964–80.

    Article  CAS  Google Scholar 

  28. Valmaggia C, Speiser P, Bischoff P, Niederberger H. Indocyanine green versus fluorescein angiography in the differential diagnosis of arteritic and nonarteritic anterior ischemic optic neuropathy. Retina. 1999;19:131–4.

    Article  CAS  PubMed  Google Scholar 

  29. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. 3. Effects on the optic nerve head. Br J Ophthalmol. 1972;56:754–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Slavin ML, Barondes MJ. Visual loss caused by choroidal ischemia preceding anterior ischemic optic neuropathy in giant cell arteritis. Am J Ophthalmol. 1994;117:81–6.

    Article  CAS  PubMed  Google Scholar 

  31. Mcleod D, Oji EO, Kohner EM, Marshall J. Fundus signs in temporal arteritis. Br J Ophthalmol. 1978;62:591–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. II. Chorio-retinal lesions. Br J Ophthalmol. 1972;56:736–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Orgul S, Cioffi GA, Wilson DJ, Bacon DR, Van Buskirk EM. An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophth Vis Sci. 1996;37:1860–9.

    CAS  Google Scholar 

  34. Orgul S, Cioffi GA, Bacon DR, Van Buskirk EM. An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys. J Glaucoma. 1996;5:135–8.

    CAS  PubMed  Google Scholar 

  35. Cioffi GA. Ischemic model of optic nerve injury. Trans Am Ophthalmol Soc. 2005;103:592–613.

    PubMed Central  PubMed  Google Scholar 

  36. Bernstein SL, Guo Y, Kelman SE, Flower RW, Johnson MA. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2003;44:4153–62.

    Article  PubMed  Google Scholar 

  37. Goldenberg-Cohen N, Guo Y, Margolis FL, Miller NR, Cohen Y, Bernstein SL. Oligodendrocyte dysfunction following induction of experimental anterior optic nerve ischemia. Investig Ophthalmol Vis Sci. 2005;46:2716–25.

    Article  Google Scholar 

  38. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17:497–504.

    Article  CAS  PubMed  Google Scholar 

  39. Nicholson JD, Puche AC, Guo Y, Weinreich D, Slater BJ, Bernstein SL. PGJ2 provides prolonged CNS stroke protection by reducing white matter edema. PLoS One. 2012;7:e50021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chuman H, Maekubo T, Osako T, Kodama Y, Ishiai M, Nao I. Rodent model of nonarteritic ischemic optic neuropathy and its electrophysiological evaluation. Jpn J Ophthalmol. 2012;56:518–27.

    Article  PubMed  Google Scholar 

  41. Mantopoulos D, Tsakris A, Sandberg MA, Miller JM, Vavvas DG, Cestari D. An experimental model of optic nerve head injury. Invest Ophthalmol Vis Sci. 2014;57:6222 (Abstract).

    Google Scholar 

  42. Wang Y, Brown DP Jr, Duan Y, Kong W, Watson BD, Goldberg JL. A novel rodent model of posterior ischemic optic neuropathy. JAMA Ophthalmol. 2013;131:194–204.

    Article  PubMed  Google Scholar 

  43. Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev. 2002;8:30–8.

    Article  PubMed  Google Scholar 

  44. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. The inflammation and host response to injury LSCRP: genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci. 2013;110:3507–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pachner AR. Experimental models of multiple sclerosis. Curr Opin Neurol. 2011;24:291–9.

    Article  PubMed  Google Scholar 

  46. Bernstein SL, Guo Y, Peterson K, Wistow G. Expressed sequence tag analysis of adult human optic nerve for NEIBank: identification of cell type and tissue markers. BMC Neurosci. 2009;10:121.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chen CS, Johnson MA, Flower RA, Slater BJ, Miller NR, Bernstein SL. A primate model of nonarteritic anterior ischemic optic neuropathy (pNAION). Invest Ophthalmol Vis Sci. 2008;49:2985–92.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Salgado C, Vilson F, Miller NR, Bernstein SL. Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model. Arch Ophthalmol. 2011;129:1583–91.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Miller NR, Johnson MA, Nolan T, Guo Y, Bernstein AM, Bernstein SL. Sustained neuroprotection from a single intravitreal injection of PGJ2 in a non-human primate model of nonarteritic anterior ischemic optic neuropathy. Invest Ophth Vis Sci. 2014;55:7047–56.

    Article  Google Scholar 

  50. Touitou V, Johnson MA, Guo Y, Miller NR, Bernstein SL. Sustained neuroprotection from a single intravitreal injection of PGJ2 in a rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2013;54:7402–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Slater BJ, Vilson FL, Guo Y, Weinreich D, Hwang S, Bernstein SL. Optic nerve inflammation and demyelination in a rodent model of nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2013;54:7952–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhang C, Guo Y, Miller NR, Bernstein SL. Optic nerve infarction and post-ischemic inflammation in the rodent model of anterior ischemic optic neuropathy (rAION). Brain Res. 2009;1264:67–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Klein RG, Hunder GG, Stanson AW, Sheps SG. Large artery involvement in giant cell (temporal) arteritis. Ann Intern Med. 1975;83:806–12.

    Article  CAS  PubMed  Google Scholar 

  54. Galetta SL, Raps EC, Wulc AE, Farber MG, Plock GL, Nichols CW, et al. Conjugal temporal arteritis. Neurology. 1990;40:1839–42.

    Article  CAS  PubMed  Google Scholar 

  55. Weyand CM, Goronzy JJ. Arterial wall injury in giant cell arteritis. Arthritis Rheum. 1999;42:844–53.

    Article  CAS  PubMed  Google Scholar 

  56. Klein RG, Campbell RJ, Hunder GG, Carney JA. Skip lesions in temporal arteritis. Mayo Clin Proc. 1976;51:504–10.

    CAS  PubMed  Google Scholar 

  57. Lie JT. When is arteritis of the temporal arteries not temporal arteritis? J Rheumatol. 1994;21:186–9.

    CAS  PubMed  Google Scholar 

  58. Albert DM, Searl SS, Craft JL. Histologic and ultrastructural characteristics of temporal arteritis. The value of the temporal artery biopsy. Ophthalmology. 1982;89:1111–26.

    Article  CAS  PubMed  Google Scholar 

  59. Chess J, Albert DM, Bhan AK, Paluck EI, Robinson N, Collins B, et al. Serologic and immunopathologic findings in temporal arteritis. Am J Ophthalmol. 1983;96:283–9.

    Article  CAS  PubMed  Google Scholar 

  60. Wells KK, Folberg R, Goeken JA, Kemp JD. Temporal artery biopsies. Correlation of light microscopy and immunofluorescence microscopy. Ophthalmology. 1989;96:1058–64.

    Article  CAS  PubMed  Google Scholar 

  61. Kreibig W. Optikomalzie, die Folge eines Geassverschelusses im Retrobulbaren Abschnitt des Sehnerven. Klin Monatsbl Augenhelkd. 1953;122:719–31 (in German).

    CAS  Google Scholar 

  62. Spencer WH, Hoyt WY. A fatal case of giant cell arteritis (temporal or cranial arteritis) with ocular involvement. Arch Ophthalmol. 1960;64:862–7.

    Article  Google Scholar 

  63. Manschot WA. A fatal case of temporal arteritis with ocular symptoms. Ophthalmologica. 1965;149:121–30.

    Article  CAS  PubMed  Google Scholar 

  64. Henkind P, Charles NC, Pearson J. Histopathology of ischemic optic neuropathy. Am J Ophthalmol. 1970;69:78–90.

    Article  CAS  PubMed  Google Scholar 

  65. Hinzpeter EN, Naumann G. Ischemic papilledema in giant-cell arteritis. Mucopolysaccharide deposition with normal intraocular pressure. Arch Ophthalmol. 1976;94:624–8.

    Article  CAS  PubMed  Google Scholar 

  66. Knox DL, Kerrison JB, Green WR. Histopathologic studies of ischemic optic neuropathy. Trans Am Ophthalmol Soc. 2000;98:203–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Levin LE. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol. 1996;114:488–91.

    Article  CAS  PubMed  Google Scholar 

  68. Tesser RA, Niendorf ER, Levin LA. The morphology of an infarct in nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2003;110:2031–5.

    Article  PubMed  Google Scholar 

  69. Levin LA, Louhab A. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol. 1996;114:488–91.

    Article  CAS  PubMed  Google Scholar 

  70. Danylkova NO, Pomeranz HD, Alcala SR, McLoon LK. Histological and morphometric evaluation of transient retinal and optic nerve ischemia in rat. Brain Res. 2006;1096:20–9.

    Article  CAS  PubMed  Google Scholar 

  71. Slater BJ, Mehrabian Z, Guo Y, Hunter A, Bernstein SL. Rodent anterior ischemic optic neuropathy (rAION) induces regional retinal ganglion cell apoptosis with a unique temporal pattern. Invest Ophthalmol Vis Sci. 2008;49:3671–6.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994;14:4368–74.

    CAS  PubMed  Google Scholar 

  73. Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Miao GG, Schilling K, et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature. 1993;363:166–9.

    Article  CAS  PubMed  Google Scholar 

  74. Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta. 2007;1772:947–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Tajiri N, Frisina-Deyo A, Boffeli SM, et al. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One. 2013;8:e63553.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tezel G, Yang X, Yang J, Wax MB. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res. 2004;996:202–12.

    Article  CAS  PubMed  Google Scholar 

  77. Yuan L, Neufeld AH. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000;32:42–50.

    Article  CAS  PubMed  Google Scholar 

  78. Sherwin C, Fern R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol. 2005;175:155–61.

    Article  CAS  PubMed  Google Scholar 

  79. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.

    Article  CAS  PubMed  Google Scholar 

  80. Jordan J, Segura T, Brea D, Galindo MF, Castillo J. Inflammation as therapeutic objective in stroke. Curr Pharm Des. 2008;14:3549–64.

    Article  CAS  PubMed  Google Scholar 

  81. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16:1211–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kigerl KA, McGaughy VM, Popovich PG. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol. 2006;494:578–94.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Pangratz-Fuehrer S, Kaur K, Ousman SS, Steinman L, Liao YJ. Functional rescue of experimental ischemic optic neuropathy with alpha B-crystallin. Eye (Lond). 2011;25:809–17.

    Article  CAS  Google Scholar 

  84. Banik R. Nonarteritic anterior ischemic optic neuropathy: an update on demographics, clinical presentation, pathophysiology, animal models, prognosis and treatment. J Clinical Exptl Ophth. 2013;S3:1–5.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all of the individuals who have worked on the rodent and nonhuman NAION models in our laboratory. These include Drs. M.A. Johnson, N. Goldenberg-Cohen, C. Chen, C. Zhang, C.Salgado, V. Touitou, Y. Guo, Z. Mehrabyan, and J. Nicholson. The invaluable assistance of our many students, including B.J. Slater, S.L. Vilson, D.L. Bernstein, A.M. Bernstein, and S. Hwang are also gratefully acknowledged. This work was funded by an unrestricted grant from Research to Prevent Blindness (SLB), The Hirschhorn Foundation (NRM), The Donegan Fund for Optic Nerve Research (NRM), and NIH grants EYRO1-019529 (SLB and NRM) and EYRO1-015304 (SLB).

Conflicts of interest

S. L. Bernstein, Patent (The use of Prostaglandin J2 for Optic nerve Disease); N. R. Miller, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Bernstein.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, S.L., Miller, N.R. Ischemic optic neuropathies and their models: disease comparisons, model strengths and weaknesses. Jpn J Ophthalmol 59, 135–147 (2015). https://doi.org/10.1007/s10384-015-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-015-0373-5

Keywords

Navigation