Log in

From natural products discovery to commercialization: a success story

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

In order for a natural product to become a commercial reality, laboratory improvement of its production process is a necessity since titers produced by wild strains could never compete with the power of synthetic chemistry. Strain improvement by mutagenesis has been a major success. It has mainly been carried out by “brute force” screening or selection, but modern genetic technologies have entered the scene in recent years. For every new strain developed genetically, there is further opportunity to raise titers by medium modifications. Of major interest has been the nutritional control by induction, as well as inhibition and repression by sources of carbon, nitrogen, phosphate and end products. Both strain improvement and nutritional modification contribute to the new process, which is then scaled up by biochemical engineers into pilot scale and later into factory size fermentors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrio JL, Demain AL (2005) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev (in press)

  2. Adrio JL, Demain AL (2005) Microbial cells and enzymes; a century of progress. In: Barredo JL (ed) Methods in biotechnology, vol 17. Microbial enzymes and biotransformations. Humana, Totowa, New Jersey, pp 1–27

    Google Scholar 

  3. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist P., Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  PubMed  CAS  Google Scholar 

  4. Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatsubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 589:16–24

    Article  PubMed  CAS  Google Scholar 

  5. Baltz RH (1986) Mutation in Streptomyces. The Bacteria 9:61–94

    CAS  Google Scholar 

  6. Berdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26

    Article  PubMed  CAS  Google Scholar 

  7. Berdy J, Kadar-Pauncz J, Mehesfalvi-Vajna Z, Horvath G, Gyimesi J (1977) Metabolites of gentamicin producing Micromonospora species. Part 1. Isolation and identification of metabolites. J Antibiot 30:945–953

    PubMed  CAS  Google Scholar 

  8. Bhargava S, Wenger KS, Marten MR (2003) Pulsed feeding during fed-batch Aspergillus oryzae fermentation leads to improved oxygen mass transfer. Biotechnol Prog 19:1091–1094

    Article  PubMed  CAS  Google Scholar 

  9. Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68:4731–4739

    Article  PubMed  CAS  Google Scholar 

  10. Chater KF, Bibb MJ (1997) Regulation of antibiotic production. In: Rehm H-J, Reed G, Kleinkauf H, von Doehren H (eds) Biotechnology, vol 7. 2nd edn. Products of secondary metabolism. VCH, Weinheim pp 57–105

  11. Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  PubMed  CAS  Google Scholar 

  12. Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1:259–264

    PubMed  CAS  Google Scholar 

  13. Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  PubMed  CAS  Google Scholar 

  14. Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    Article  PubMed  CAS  Google Scholar 

  15. Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18:26–31

    Article  PubMed  CAS  Google Scholar 

  16. Demain AL (2001) Molecular genetics and industrial microbiology—30 years of marriage. J Ind Microbiol Biotechnol 27:352–356

    Article  PubMed  CAS  Google Scholar 

  17. Demain AL (2004) The biopharmaceutical revolution. Chim Oggi/Chem Today 22(11–12):41–44

    Google Scholar 

  18. Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Ant v Leeuwenhoek 75:5–19

    Article  CAS  Google Scholar 

  19. Demain AL, Vaishnav P (2002) Regulation of β-lactam antibiotic biosynthesis by carbon sources. Chim Oggi/Chem Today 20(11–12):46–51

    CAS  Google Scholar 

  20. Demain AL, Vaishnav P (2003) Nitrogen regulation of biosynthesis of antibiotics and other secondary metabolic products. Pharma Chem 2(10):92–96

    CAS  Google Scholar 

  21. Demain AL Vaishnav P (2004) Secondary metabolism in microbes and its control by phosphate and metals. SIM News 54:104–113

    Google Scholar 

  22. Eggeling L, Sahm H, de Graaf AA (1996) Quantifying and directing metabolic flux: application to amino acid overproduction. Adv Biochem Eng Biotechnol 54:1–30

    CAS  Google Scholar 

  23. Elmayergi H (1975) Mechanism of pellet formation of Aspergillus niger with an additive. J Ferm Technol 53:722–729

    CAS  Google Scholar 

  24. Escalante L, Ramos I, Imriskova I, Langley E, Sanchez S (1999) Glucose repression of anthracycline formation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 52:572–578

    Article  CAS  Google Scholar 

  25. Guillouet S, Rodal AA, An G-H, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    PubMed  CAS  Google Scholar 

  26. Han L, Parekh S (2004) Development of improved strains and optimization of fermentation processes. In: Barredo JL (ed) Microbial processes and products. Humana, Totowa, New Jersey, pp 1–23

    Google Scholar 

  27. Handelsman J (2004) Soils—the metagenomics approach. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washingtopn, DC pp 109–119

    Google Scholar 

  28. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245-R249

    Article  PubMed  CAS  Google Scholar 

  29. Ishizuka H, Wako K, Kasumi T, Sasaki T (1989) Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferm Bioeng 68:310–314

    Article  CAS  Google Scholar 

  30. Jarvis GF, Johnson MJ (1947) The role of the constituents of synthetic media for penicillin production. J Amer Chem Soc 69:3010–3017

    Article  CAS  Google Scholar 

  31. Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem 216:361–367

    Article  PubMed  CAS  Google Scholar 

  32. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy J, Turner G (1996) δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197

    Article  PubMed  CAS  Google Scholar 

  34. Khetan A, HuW-S (1999) Metabolic engineering of antibiotic biosynthetic pathways. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. 2nd edn. ASM Press, Washington, DC pp 717–724

    Google Scholar 

  35. Lomovskaya N, Doi-Katayama Y, Filippini S, Nastro C, Fonstein L, Gallo M, Colombo AL, Hutchinson CR (1998) The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180:2379–2386

    PubMed  CAS  Google Scholar 

  36. Madduri K, Waldrom M, Matsushima P, Broughton MC, Crawford K, Merlo DJ, Baltz RH (2001) Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J Ind Microbiol Biotechnol 27:399–402

    Article  PubMed  CAS  Google Scholar 

  37. Mueller C, Hansen K, Szabo P, Nielsen J (2003) Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae. Biotechnol Bioeng 81:525–534

    Article  PubMed  CAS  Google Scholar 

  38. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  PubMed  CAS  Google Scholar 

  39. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    Article  PubMed  CAS  Google Scholar 

  40. Pospisil S, Peterkova M, Krumphanzl V, Vanek Z (1984) Regulatory mutants of Streptomyces cinnamonensis producing monensin A. FEMS Microbiol Lett 24:209–213

    Article  CAS  Google Scholar 

  41. Rappe MS., Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  42. Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906

    Article  CAS  Google Scholar 

  44. Soltero FV, Johnson MJ (1953) Effect of the carbohydrate nutrition on penicillin production by P. chrysogenum Q-176. Appl Microbiol 1:52–57

    PubMed  CAS  Google Scholar 

  45. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  PubMed  CAS  Google Scholar 

  46. Stutzman-Engwall K, Conlon S, Fedechko R, McArthur H, Pekrun K, Chen Y, Jenne S, La C, Trinh N, Kim S, Zhang Y-X, Fox R, Gustafsson C, Krebber A (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng 7:27–37

    Article  PubMed  CAS  Google Scholar 

  47. Supek V, Gamulin S, Delic V (1985) Enhancement of bacitracin biosynthesis by branched-chain amino acids in a regulatory mutant of Bccillus licheniformis. Folia Microbiol 30:342–348

    Article  CAS  Google Scholar 

  48. Thykaer J, Nielsen J (2003) Metabolic engineering of β-lactam production. Metab Eng 5:56–69

    Article  CAS  Google Scholar 

  49. Umezawa H (1972) Enzyme Inhibitors of Microbial Origin. University Park Press, Baltimore

    Google Scholar 

  50. Umezawa H (1982) Low-molecular-weight inhibitors of microbial origin. Annu Rev Microbiol 36:75–99

    Article  PubMed  CAS  Google Scholar 

  51. Vinci VA, Hoerner TD, Coffman AD, Schimmel TG, Dabora RL, Kirpekar AC, Ruby CL, Stieber RW (1991) Mutants of a lovaststin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. J Ind Microbiol 8:113–120

    Article  CAS  Google Scholar 

  52. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  PubMed  CAS  Google Scholar 

  53. Woodruff HB (1966) The physiology of antibiotic production: the role of the producing organism. Symp Soc Gen Microbiol 16:22–46

    CAS  Google Scholar 

  54. Yang W, Hartwieg EA, Fang A, Demain AL (2003) Effects of carboxymethylcellulose and carboxypolymethylene on morphology of A. fumigatus NRRL 2346 and fumagillin production. Curr Microbiol 46:24–27

    Article  PubMed  CAS  Google Scholar 

  55. Zengler K, Toledo G, Rappé M, Elkins J, Mathur E J, Short J M, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demain, A.L. From natural products discovery to commercialization: a success story. J IND MICROBIOL BIOTECHNOL 33, 486–495 (2006). https://doi.org/10.1007/s10295-005-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0076-x

Keywords

Navigation