Methods for the Development of Recombinant Microorganisms for the Production of Natural Products

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Metabolic engineering strives to develop microbial strains that are capable of producing a target chemical in a biological organism. There are still many challenges to overcome in order to achieve titers, yields, and productivities necessary for industrial production. The use of recombinant microorganisms to meet these needs is the next step for metabolic engineers. In this chapter, we aim to provide insight on both the applications of metabolic engineering for natural product biosynthesis as well as optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1(11):514–525. https://doi.org/10.1021/sb300094q

    Article  CAS  PubMed  Google Scholar 

  2. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25(3):132–137. https://doi.org/10.1016/j.tibtech.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728. https://doi.org/10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  4. Schweder T, Krüger E, Xu B, Jürgen B, Blomsten G, Enfors S-O, Hecker M (1999) Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol Bioeng 65(2):151–159. https://doi.org/10.1002/(SICI)1097-0290(19991020)65:2<151::AID-BIT4>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  5. George S, Larsson G, Olsson K, Enfors SO (1998) Comparison of the Baker's yeast process performance in laboratory and production scale. Bioprocess Eng 18(2):135–142. https://doi.org/10.1007/PL00008979

    Article  CAS  Google Scholar 

  6. Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185. https://doi.org/10.1016/s0168-1656(00)00365-5

    Article  CAS  PubMed  Google Scholar 

  7. Villadsen J, Jens Nielsen J, Lidén G (2011) Bioreaction engineering principles, 3rd edn. Springer, Boston, MA

    Book  Google Scholar 

  8. Schultenkamper K, Brito LF, Wendisch VF (2020) Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 67(1):7–21. https://doi.org/10.1002/bab.1901

    Article  CAS  PubMed  Google Scholar 

  9. Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MA (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16(1):10. https://doi.org/10.1186/s12934-016-0623-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang XC, Guo Y, Liu X, Chen XG, Wu Q, Chen GQ (2018) Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli. Metab Eng 45:32–42. https://doi.org/10.1016/j.ymben.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  11. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140(1):19–23. https://doi.org/10.1016/j.cell.2009.12.029

    Article  CAS  PubMed  Google Scholar 

  12. **a T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-crick base pairs. Biochemistry 37(42):14719–14735. https://doi.org/10.1021/bi9809425

    Article  CAS  PubMed  Google Scholar 

  13. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950. https://doi.org/10.1038/nbt.1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kierzek R, Burkard ME, Turner DH (1999) Thermodynamics of single mismatches in RNA duplexes. Biochemistry 38(43):14214–14223. https://doi.org/10.1021/bi991186l

    Article  CAS  PubMed  Google Scholar 

  15. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207. https://doi.org/10.1016/j.ymben.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  16. Jones JA, Toparlak OD, Koffas MA (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59. https://doi.org/10.1016/j.copbio.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  17. Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409. https://doi.org/10.1038/ncomms2425

    Article  CAS  PubMed  Google Scholar 

  18. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171. https://doi.org/10.1002/bit.22548

    Article  CAS  PubMed  Google Scholar 

  19. ** LQ, ** WR, Ma ZC, Shen Q, Cai X, Liu ZQ, Zheng YG (2019) Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Appl Microbiol Biotechnol 103(21–22):8725–8736. https://doi.org/10.1007/s00253-019-10172-y

    Article  CAS  PubMed  Google Scholar 

  20. Jiao S, Li X, Yu H, Yang H, Li X, Shen Z (2017) In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 114(4):832–842. https://doi.org/10.1002/bit.26197

    Article  CAS  PubMed  Google Scholar 

  21. Mairhofer J, Scharl T, Marisch K, Cserjan-Puschmann M, Striedner G (2013) Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl Environ Microbiol 79(12):3802–3812. https://doi.org/10.1128/AEM.00365-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG (2017) Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synth Biol 6(4):710–720. https://doi.org/10.1021/acssynbio.6b00350

    Article  CAS  PubMed  Google Scholar 

  23. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. https://doi.org/10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  24. Cress BF, Trantas EA, Ververidis F, Linhardt RJ, Koffas MA (2015) Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 36:205–214. https://doi.org/10.1016/j.copbio.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  25. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31(11):1039–1046. https://doi.org/10.1038/nbt.2689

    Article  CAS  PubMed  Google Scholar 

  26. Chappell J, Westbrook A, Verosloff M, Lucks JB (2017) Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 8(1):1051. https://doi.org/10.1038/s41467-017-01082-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer S, Chappell J, Sankar S, Chew R, Lucks JB (2016) Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnol Bioeng 113(1):216–225. https://doi.org/10.1002/bit.25693

    Article  CAS  PubMed  Google Scholar 

  28. To AC-Y, Chu DH, Wang AR, Li FC, Chiu AW, Gao DY, Choi CHJ, Kong SK, Chan TF, Chan KM, Yip KY (2018) A comprehensive web tool for toehold switch design. Bioinformatics 34(16):2862–2864. https://doi.org/10.1093/bioinformatics/bty216

    Article  CAS  PubMed  Google Scholar 

  29. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939. https://doi.org/10.1016/j.cell.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dinh CV, Prather KLJ (2019) Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc Natl Acad Sci U S A 116(51):25562–25568. https://doi.org/10.1073/pnas.1911144116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones JA, Koffas MA (2016) Optimizing metabolic pathways for the improved production of natural products. Methods Enzymol 575:179–193. https://doi.org/10.1016/bs.mie.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  32. Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature 497(7451):619–623. https://doi.org/10.1038/nature12148

    Article  CAS  PubMed  Google Scholar 

  33. Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111(31):11299–11304. https://doi.org/10.1073/pnas.1406401111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359. https://doi.org/10.1038/nbt.2149

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38(5):581–597. https://doi.org/10.1007/s10295-010-0894-3

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Liu C-Z (2012) Co-culture of clostridium thermocellum and clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int J Hydrog Energy 37(14):10648–10654. https://doi.org/10.1016/j.ijhydene.2012.04.115

    Article  CAS  Google Scholar 

  37. Bader J, Mast-Gerlach E, Popovic MK, Bajpai R, Stahl U (2010) Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 109(2):371–387. https://doi.org/10.1111/j.1365-2672.2009.04659.x

    Article  CAS  PubMed  Google Scholar 

  38. Jawed K, Yazdani SS, Koffas MA (2019) Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun 9:e00095. https://doi.org/10.1016/j.mec.2019.e00095

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chemler JA, Lock LT, Koffas MA, Tzanakakis ES (2007) Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Appl Microbiol Biotechnol 77(4):797–807. https://doi.org/10.1007/s00253-007-1227-y

    Article  CAS  PubMed  Google Scholar 

  40. Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG (2019) Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 55:290–298. https://doi.org/10.1016/j.ymben.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  41. Thuan NH, Chaudhary AK, Van Cuong D, Cuong NX (2018) Engineering co-culture system for production of apigetrin in Escherichia coli. J Ind Microbiol Biotechnol 45(3):175–185. https://doi.org/10.1007/s10295-018-2012-x

    Article  CAS  PubMed  Google Scholar 

  42. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597. https://doi.org/10.1073/pnas.1218447110

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang R, Zhao S, Wang Z, Koffas MA (2020) Recent advances in modular co-culture engineering for synthesis of natural products. Curr Opin Biotechnol 62:65–71. https://doi.org/10.1016/j.copbio.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  44. Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ (2016) Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Factories 15:21. https://doi.org/10.1186/s12934-016-0418-6

    Article  CAS  Google Scholar 

  45. Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci U S A 112(27):8266–8271. https://doi.org/10.1073/pnas.1506781112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Evans M, Rees A (2002) Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf 25(9):649–663. https://doi.org/10.2165/00002018-200225090-00004

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Tu X, Xu Q, Bai C, Kong C, Liu Q, Yu J, Peng Q, Zhou X, Zhang Y, Cai M (2018) Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol. Metab Eng 45:189–199. https://doi.org/10.1016/j.ymben.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  48. Zhou K, Qiao K, Edgar S, Stephanopoulos G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33(4):377–383. https://doi.org/10.1038/nbt.3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fang Z, Jones JA, Zhou J, Koffas MAG (2018) Engineering Escherichia coli co-cultures for production of Curcuminoids from glucose. Biotechnol J 13(5):e1700576. https://doi.org/10.1002/biot.201700576

    Article  CAS  PubMed  Google Scholar 

  50. Jones JA, Vernacchio VR, Collins SM, Shirke AN, **u Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. mBio 8(3):e00621-00617. https://doi.org/10.1128/mBio.00621-17

    Article  Google Scholar 

  51. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23(5):345–357. https://doi.org/10.1016/j.biotechadv.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  52. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119(3):736–747. https://doi.org/10.1128/JB.119.3.736-747.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bizzini A, Zhao C, Budin-Verneuil A, Sauvageot N, Giard J-C, Auffray Y, Hartke A (2010) Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol 192(3):779–785. https://doi.org/10.1128/jb.00959-09

    Article  CAS  PubMed  Google Scholar 

  54. Donovan RS, Robinson CW, Glick BR (1996) Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter. J Ind Microbiol 16(3):145–154. https://doi.org/10.1007/BF01569997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF grant program grant number MCB-1817631 awarded to Mattheos Koffas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattheos A. G. Koffas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perl, A., Dalton, H., Yoo, Y., Koffas, M.A.G. (2022). Methods for the Development of Recombinant Microorganisms for the Production of Natural Products. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation