Log in

An analysis of some exact solutions for stratified wind-stress flows with centripetal effects

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we present an exact purely azimuthal solution for the governing equations of three-dimensional wind-stress geophysical stratified flows over an impermeable flat bed and with a flat surface, with centripetal effects at arbitrary latitude. In general stratification (depending on the depth and latitude but not on the azimuthal direction), we consider the governing equation in the \(\beta\)-plane approximation. For the special two-layer model (due to the strong stratification), we analyze the problem in the f-plane approximation. Moreover, in the two-layer flows, we prove some monotonicity results with respect to the strength of the wind speed near the ocean’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bourassa, M.A., Vincent, D.G., Wood, W.L.: A flux parameterization including the effects of capillary waves and sea state. J. Atmospheric Sci. 56, 1123–1139 (1999)

    Article  Google Scholar 

  2. Bressan, A., Constantin, A.: The deflection angle of surface ocean currents from the wind direction. J. Geophys. Res. 124, 7412–7420 (2019)

    Article  Google Scholar 

  3. Chu, J., Wang, L.: Analyticity of rotational travelling waves in two-layer flows. Stud. Appl. Math. 146, 605–634 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical trapped waves at arbitrary latitude. Discrete Contin. Dyn. Syst. 39, 4399–4414 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude. J. Math. Fluid Mech. 21, 16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chu, J., Yang, Y.: A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude. J. Differ. Equ. 279, 46–62 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  Google Scholar 

  8. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)

    Google Scholar 

  9. Constantin, A.: On equatorial wind waves. Differ. Integral Equ. 26, 237–252 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: Frictional effects in wind-driven ocean currents. Geophys. Astrophys. Fluid Dyn. 115, 1–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Comm. Math. Phys. 370, 1–48 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  15. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  Google Scholar 

  16. Constantin, A., Johnson, R.S.: Atmospheric Ekman flows with variable eddy viscosity. Bound.-Lay Meteorol. 170, 395–414 (2019)

    Article  Google Scholar 

  17. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

    Article  Google Scholar 

  18. Constantin, A., Varvaruca, E.: Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cronin, M.F., Kessler, W.S.: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr. 39, 1200–1215 (2009)

    Article  Google Scholar 

  20. Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic. Mass, Waltham (2011)

    MATH  Google Scholar 

  21. Escher, J.: Regularity of rotational travelling water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370, 1602–1615 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Escher, J., Matioc, A.-V., Matioc, B.-V.: On stratified steady periodic water waves with linear density distribution and stagnation points. J. Differ. Equ. 251, 2932–2949 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Escher, J., Knopf, P., Lienstromberg, C., Matioc, B.-V.: Stratified periodic water waves with singular density gradients. Ann. Mat. Pura Appl. 199, 1923–1959 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Firing, Y.L., Chereskin, T.K., Mazloff, M.R.: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res. 116, C08015 (2004)

    Google Scholar 

  25. Garcia-Nava, H., Ocampo-Torres, F.J., Osuna, P., Donelan, M.A.: Wind stress in the presence of swell under moderate to strong conditions. J. Geophys. Res. 114, C12008 (2009)

    Article  Google Scholar 

  26. Gill, A.: Atmosphere-Ocean Dynamics. Academic Press, New York (2018)

    Google Scholar 

  27. Haziot, S.V.: Stratified large-amplitude steady periodic water waves with critical layers. Comm. Math. Phys. 381, 765–797 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Henry, D.: Analyticity of the free surface for periodic travelling capillary-gravity water waves with vorticity. J. Math. Fluid Mech. 14, 249–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta\)-plane approximation with centripetal forces. J. Fluid Mech. 804, 11 (2016)

    Article  MathSciNet  Google Scholar 

  31. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. 266, 6788–6808 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Henry, D., Martin, C.I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Ration. Mech. Anal. 233, 497–512 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Henry, D., Martin, C.I.: Stratified equatorial flows in cylindrical coordinates. Nonlinearity 33, 3889–3904 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Henry, D., Matioc, B.-V.: On the regularity of steady periodic stratified water waves. Commun. Pure Appl. Anal. 11, 1453–1464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ivchenko, V.O., Richards, K.J., Stevens, D.P.: The dynamics of the antarctic circumpolar current. J. Phys. Oceanogr. 26, 753–774 (1996)

    Article  Google Scholar 

  36. Martin, C.I.: Analyticity of the streamlines and of the free surface for periodic equatorial gravity water flows with vorticity. Nonlinear Anal. Real World Appl. 21, 27–33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Martin, C.I.: Dynamics of the thermocline in the equatorial region of the Pacific ocean. J. Nonlinear Math. Phys. 22, 516–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martin, C.I.: On constant vorticity water flows in the \(\beta\)-plane approximation. J. Fluid Mech. 865, 762–774 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Martin, C.I., Quirchmayr, R.: A steady stratified purely azimuthal flow representing the Antarctic Circumpolar Current. Monatsh. Math. 192, 401–407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Matioc, B.-V.: Analyticity of the streamlines for periodic traveling water waves with bounded vorticity. Int. Math. Res. Not. IMRN 2011, 3858–3871 (2011)

    MathSciNet  MATH  Google Scholar 

  41. McCreary, J.P.: Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech. 17, 359–409 (1985)

    Article  MATH  Google Scholar 

  42. Peters, H., Gregg, M.C., Toole, J.M.: On the parameterization of equatorial turbulence. J. Geophys. Res. 93, 1199–1218 (1988)

    Article  Google Scholar 

  43. Quirchmayr, R.: A steady, purely azimuthal flow model for the Antarctic Circumpolar Current. Monatsh. Math. 187, 565–572 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smyth, W.D., Hebert, D., Moum, J.N.: Local ocean response to a multiphase westerly wind burst. J. Geophys. Res. 101, 495–512 (1996)

    Google Scholar 

  45. Tomczak, M., Godfrey, J.S.: Regional Oceanography: An Introdution. Pergamon Press, Oxford (1994)

    Google Scholar 

  46. Walsh, S.: Stratified steady periodic water waves. SIAM J. Math. Anal. 41, 1054–1105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Walsh, S., Bhler, O., Shatah, J.: Steady water waves in the presence of wind. SIAM J. Math. Anal. 45, 2182–2227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, W., Huang, R.X.: Wind energy input to the Ekman layer. J. Phys. Oceanogr. 34, 1267–1275 (2004)

    Article  Google Scholar 

  49. Wenegrat, J.O., McPhaden, M.J., Lien, R.C.: Wind stress and near-surface shear in the equatorial Atlantic Ocean. Geophys. Res. Lett. 41, 1226–1231 (2014)

    Article  Google Scholar 

  50. Wheeler, M.: On stratified water waves with critical layers and Coriolis forces. Discrete Contin. Dyn. Syst. 8, 4747–4770 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, Y., Wang, X.: Exact and explicit internal water waves at arbitrary latitude with underlying currents. Dyn. Partial Differ. Equ. 17, 117–127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjuan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the China Postdoctoral Science Foundation (Grant No. 2021M702037) and the Shandong Provincial Natural Science Foundation (Grant No. ZR2021QA048).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, X. An analysis of some exact solutions for stratified wind-stress flows with centripetal effects. Annali di Matematica 201, 2663–2676 (2022). https://doi.org/10.1007/s10231-022-01213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01213-x

Keywords

Mathematics Subject Classification

Navigation