Log in

Exact, Free-Surface Equatorial Flows with General Stratification in Spherical Coordinates

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of a new exact solution to the geophysical fluid dynamics governing equations for inviscid and incompressible fluid in the equatorial region. This solution represents a steady purely-azimuthal flow with a free-surface. The novel aspect of the solution we derive is that the flow it prescribes accommodates a general fluid stratification: the density may vary both with depth, and with latitude. The solution is presented in the terms of spherical coordinates, hence at no stage do we invoke approximations by way of simplifying the geometry in the governing equations. Following the construction of our explicit solution, we employ functional analytic considerations to prove that the pressure at the free-surface defines implicitly the shape of the free-surface distortion in a unique way, exhibiting also the expected monotonicity properties. Finally, using a short-wavelength stability analysis we prove that certain flows defined by our exact solution are stable for a specific choice of the density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)

    Google Scholar 

  2. Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  3. Chen, R.M., Walsh, S., Wheeler, M.: Existence and qualitative theory for stratified solitary water waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(2), 517–576 2018

  4. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  ADS  Google Scholar 

  5. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  ADS  Google Scholar 

  6. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016). https://doi.org/10.1175/JPO-D-15-0205.1

    Article  ADS  Google Scholar 

  8. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  ADS  Google Scholar 

  9. Constantin, A., Ivanov, R.I.: A Hamiltonian approach to wave-current interactions in two-layer fluids. Physics of Fluids 27, 086603 (2015)

    Article  ADS  MATH  Google Scholar 

  10. Constantin, A., Ivanov, R.I., Martin, C.I.: Hamiltonian formulation for wave-current interactions in stratified rotational flows. Arch. Ration. Mech. Anal 221, 1417–1447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604 (2017). https://doi.org/10.1063/1.4984001

    Article  ADS  Google Scholar 

  12. Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)

    MATH  Google Scholar 

  13. Escher, J., Matioc, A.-V., Matioc, B.-V.: On stratified steady periodic water waves with linear density distribution and stagnation points. J. Diff. Equ. 251, 2932–2949 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fedorov, A.V., Brown, J.N.: Equatorial waves. In: Steele, J. (ed), Encyclopedia of Ocean Sciences, pp. 3679–3695. Academic Press, New York, 2009

  15. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gill, A.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  18. Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differential Equations 258(4), 1015–1024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Henry, D., Martin, C.I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15, 337–349 2018

  20. Henry, D., Martin, C.-I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differential Equations, to appear

  21. Henry, D., Matioc, A.-V.: Global bifurcation of capillary-gravity-stratified water waves. Proc. Roy. Soc. Edinburgh Sect. A 144(4), 775–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry, D., Matioc, B.-V.: On the existence of steady periodic capillary-gravity stratified water waves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 955–974 2013

  23. Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Phil. Trans. R. Soc. A 376, 20170090 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ionescu-Kruse, D.: Local stability for an exact steady purely azimuthal flow which models the antarctic circumpolar current. J. Math Fluid Mech. 20, 569–579 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ionescu-Kruse, D., Martin, C.I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20, 27–34 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Izumo, T.: The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean. Ocean Dyn. 55, 110–123 (2005)

    Article  ADS  Google Scholar 

  27. Johnson, G.C., McPhaden, M.J., Firing, E.: Equatorial Pacific ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr. 31, 839–849 (2001)

    Article  ADS  Google Scholar 

  28. Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Phil. Trans. R. Soc. A 376, 20170092 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kessler, W.S., McPhaden, M.J.: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate 8, 1757–1774 (1995)

    Article  ADS  Google Scholar 

  30. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids 3, 2644–2651 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Martin, C.I.: On the existence of free-surface azimuthal equatorial flows. Appl. Anal. 96(7), 1207–1214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matioc, B.-V.: Global bifurcation for water waves with capillary effects and constant vorticity. Monatsh. Math. 174(3), 459–475 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maslowe, S.A.: Critical layers in shear flows. Ann. Rev. Fluid. Mech. 18, 405–432 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. McCreary, J.P.: Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech. 17, 359–409 (1985)

    Article  ADS  MATH  Google Scholar 

  35. Vallis, G.K.: Atmospheric and oceanic fluid dynamics. Cambridge University Press (2006)

  36. Walsh, S.: Stratified steady periodic water waves. SIAM J. Math. Anal. 41, 1054–1105 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Walsh, S.: Steady stratified periodic gravity waves with surface tension II: global bifurcation. Discret. Contin. Dyn. Syst. 34(8), 3287–3315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Science Foundation Ireland (SFI) under the research grant 13/CDA/2117. The authors would like to thank the reviewer for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Henry.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, D., Martin, C.I. Exact, Free-Surface Equatorial Flows with General Stratification in Spherical Coordinates. Arch Rational Mech Anal 233, 497–512 (2019). https://doi.org/10.1007/s00205-019-01362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01362-z

Navigation