Log in

A review of the biogas digestate in agricultural framework

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In addition to energy production from the biogas plants, which are among renewable energy technologies, biogas digestate is also produced. The scientific studies related to this product have increased especially since 2000, and continue to increase. These studies show that the usage area of biogas digestate is quite wide, and it is a valuable product. According to these studies, biogas digestate is a product that can be used in plant nutrition, animal feed, obtaining irrigation water, bio-pesticide, seed pre-treatment, phosphate salt, and carbon synthesis. When the studies are examined, it is seen that biogas digestate is a product that can compete with limited fossil resources. However, it was seen that more scientific studies should be done about risk factors, environmental effects, fertilizer treatment methods and enrichment in the long-term applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

5. References

  1. Weiland P (2010) Biogas production: Current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  Google Scholar 

  2. Ariyanto T, Cahyono RB, Vente A et al (2017) Utilization of fruit waste as biogas plant feed and its superiority compared to landfill. Int J Technol 8:1385. https://doi.org/10.14716/ijtech.v8i8.739

    Article  Google Scholar 

  3. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  4. Rehl T, Müller J (2011) Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl 56:92–104. https://doi.org/10.1016/j.resconrec.2011.08.007

    Article  Google Scholar 

  5. Comparetti A, Febo P, Greco C, Orlando S (2013) Current state and future of biogas and digestate production. Bulg J Agric Sci 19:1–14. https://doi.org/10.1146/annurev.earth.32.101802.120435

    Article  Google Scholar 

  6. Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues—friend or foe of soil fertility? Soil Biol Biochem 84:1–14. https://doi.org/10.1016/j.soilbio.2015.02.006

    Article  Google Scholar 

  7. Arici S, Koçar G (2015) The effect of adding maize silage as a co-substrate for anaerobic animal manure digestion. Int J Green Energy 12:453–460. https://doi.org/10.1080/15435075.2013.848361

    Article  Google Scholar 

  8. Czekała W (2019) Processing of digested pulp from agricultural biogas plant. Innovative approaches and applications for sustainable rural development. Springer Earth System Sciences, New York, pp 371–385

    Chapter  Google Scholar 

  9. Koszel M, Lorencowicz E (2015) Agricultural use of biogas digestate as a replacement fertilizers. Agric Agric Sci Procedia 7:119–124. https://doi.org/10.1016/j.aaspro.2015.12.004

    Article  Google Scholar 

  10. Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—potential benefits and drawbacks. Energies 2:226–242. https://doi.org/10.3390/en20200226

    Article  Google Scholar 

  11. Feng L, Cai M, Li F, Chen S (2019) The research progress and hot-spot analysis of biogas slurry based on literature metrology. IOP Conf Ser Earth Environ Sci 237:052032. https://doi.org/10.1088/1755-1315/237/5/052032

    Article  Google Scholar 

  12. Wu D, Li L, Zhao X et al (2019) Anaerobic digestion: a review on process monitoring. Renew Sustain Energy Rev 103:1–12. https://doi.org/10.1016/j.rser.2018.12.039

    Article  Google Scholar 

  13. Dalkılıç K, Uğurlu A (2017) Influence of hydraulic retention time and reactor configuration during fermentation of diluted chicken manure. Appl Biochem Biotechnol 181:157–176. https://doi.org/10.1007/s12010-016-2205-6

    Article  Google Scholar 

  14. Muscolo A, Settineri G, Papalia T et al (2017) Anaerobic co-digestion of recalcitrant agricultural wastes: characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Sci Total Environ 586:746–752. https://doi.org/10.1016/j.scitotenv.2017.02.051

    Article  Google Scholar 

  15. Eich-Greatorex S, Vivekanand V, Estevez MM et al (2018) Biogas digestates based on lignin-rich feedstock—potential as fertilizer and soil amendment. Arch Agron Soil Sci 64:347–359. https://doi.org/10.1080/03650340.2017.1352086

    Article  Google Scholar 

  16. Svoboda N, Taube F, Wienforth B et al (2013) Nitrogen leaching losses after biogas residue application to maize. Soil Tillage Res 130:69–80. https://doi.org/10.1016/j.still.2013.02.006

    Article  Google Scholar 

  17. Risberg K, Cederlund H, Pell M et al (2017) Comparative characterization of digestate versus pig slurry and cow manure—chemical composition and effects on soil microbial activity. Waste Manag 61:529–538. https://doi.org/10.1016/j.wasman.2016.12.016

    Article  Google Scholar 

  18. Iocoli GA, Zabaloy MC, Pasdevicelli G, Gómez MA (2019) Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: characterization, soil biological activity and growth dynamic of Lactuca sativa L. Sci Total Environ 647:11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444

    Article  Google Scholar 

  19. Świątczak P, Cydzik-Kwiatkowska A, Zielińska M (2018) Treatment of the liquid phase of digestate from a biogas plant for water reuse. Bioresour Technol 276:226–235. https://doi.org/10.1016/J.BIORTECH.2018.12.077

    Article  Google Scholar 

  20. Tigini V, Franchino M, Bona F, Varese GC (2016) Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. Sci Total Environ 551–552:127–132. https://doi.org/10.1016/j.scitotenv.2016.02.004

    Article  Google Scholar 

  21. Liu T, Zhou X, Li Z et al (2019) Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Bioresour Technol 280:345–351. https://doi.org/10.1016/j.biortech.2019.01.147

    Article  Google Scholar 

  22. Tan X-B, Yang L-B, Zhang W-W, Zhao X-C (2020) Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. Bioresour Technol 297:122379. https://doi.org/10.1016/J.BIORTECH.2019.122379

    Article  Google Scholar 

  23. Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosystems 82:209–232. https://doi.org/10.1007/s10705-008-9196-9

    Article  Google Scholar 

  24. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257. https://doi.org/10.1002/elsc.201100085

    Article  Google Scholar 

  25. Elling FJ, Coban H, Hinrichs K-U et al (2015) The contribution of biogas residues to soil organic matter formation and CO 2 emissions in an arable soil. Soil Biol Biochem 86:108–115. https://doi.org/10.1016/j.soilbio.2015.03.023

    Article  Google Scholar 

  26. Takemura K, Endo R, Kitaya Y (2018) Possibility of co-culturing Euglena gracilis and Lactuca sativa L. with biogas digestate. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.1516803

    Article  Google Scholar 

  27. Li K, Liu R, Cui S et al (2018) Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production. Renew Energy 118:335–342. https://doi.org/10.1016/j.renene.2017.11.023

    Article  Google Scholar 

  28. Georgiou D, Liliopoulos V, Aivasidis A (2019) Investigation of an integrated treatment technique for anaerobically digested animal manure: lime reaction and settling, ammonia strip** and neutralization by biogas scrubbing. Bioresour Technol Rep 5:127–133. https://doi.org/10.1016/j.biteb.2019.01.001

    Article  Google Scholar 

  29. Yuan X, **ong T, Yao S et al (2019) A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability. Chemosphere 237:124536. https://doi.org/10.1016/j.chemosphere.2019.124536

    Article  Google Scholar 

  30. Pivato A, Vanin S, Raga R et al (2016) Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag 49:378–389. https://doi.org/10.1016/j.wasman.2015.12.009

    Article  Google Scholar 

  31. Czekała W, Dach J, Dong R et al (2017) Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosyst Eng 160:25–29. https://doi.org/10.1016/j.biosystemseng.2017.05.003

    Article  Google Scholar 

  32. Jeong E, Kim HW, Nam JY, Shin HS (2010) Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor. Bioresour Technol 101:S7–S12. https://doi.org/10.1016/j.biortech.2009.04.064

    Article  Google Scholar 

  33. Khalid A, Arshad M, Anjum M et al (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

    Article  Google Scholar 

  34. Behera SK, Park JM, Kim KH, Park HS (2010) Methane production from food waste leachate in laboratory-scale simulated landfill. Waste Manag 30:1502–1508. https://doi.org/10.1016/j.wasman.2010.02.028

    Article  Google Scholar 

  35. Al Seadi T, Drosg B, Fuchs W et al (2013) Biogas digestate quality and utilization. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  36. Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertiliser, International Energy Agency Bioenergy Task 37 Energy from Biogas

  37. Sen B, Aravind J, Kanmani P, Lay CH (2016) State of the art and future concept of food waste fermentation to bioenergy. Renew Sustain Energy Rev 53:547–557

    Article  Google Scholar 

  38. Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492. https://doi.org/10.1007/s13593-013-0196-z

    Article  Google Scholar 

  39. Siddique NI, Wahid ZA (2018) Achievements and perspectives of anaerobic co-digestion: a review. J Clean Prod 194:359–371. https://doi.org/10.1016/j.jclepro.2018.05.155

    Article  Google Scholar 

  40. Westerholm M, Isaksson S, Karlsson Lindsjö O, Schnürer A (2018) Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Appl Energy 226:838–848. https://doi.org/10.1016/j.apenergy.2018.06.045

    Article  Google Scholar 

  41. Wojnowska-Baryła I, Bernat K, Sartowska S (2018) Biological stability of multi-component agri-food digestates and post-digestates. Waste Manag 77:140–146. https://doi.org/10.1016/j.wasman.2018.05.016

    Article  Google Scholar 

  42. Peng W, Pivato A (2019) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valoriz 10:465–481

    Article  Google Scholar 

  43. Lü F, Shao L-M, Zhang H et al (2018) Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: a minireview. Bioresour Technol 248:122–133. https://doi.org/10.1016/J.BIORTECH.2017.06.045

    Article  Google Scholar 

  44. Goberna M, Podmirseg SM, Waldhuber S et al (2011) Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl Soil Ecol 49:18–25. https://doi.org/10.1016/j.apsoil.2011.07.007

    Article  Google Scholar 

  45. Törnwall E, Pettersson H, Thorin E, Schwede S (2017) Post-treatment of biogas digestate—an evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142:957–963. https://doi.org/10.1016/j.egypro.2017.12.153

    Article  Google Scholar 

  46. Thomas BW, Li X, Nelson V, Hao X (2017) Anaerobically digested cattle manure supplied more nitrogen with less phosphorus accumulation than undigested manure. Agron J. https://doi.org/10.2134/agronj2016.12.0719

    Article  Google Scholar 

  47. Valentinuzzi F, Cavani L, Porfido C et al (2020) The fertilising potential of manure-based biogas fermentation residues: pelleted vs. liquid digestate. Heliyon 6:e03325. https://doi.org/10.1016/J.HELIYON.2020.E03325

    Article  Google Scholar 

  48. Bauer A, Mayr H, Hopfner-Sixt K, Amon T (2009) Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. J Biotechnol 142:56–63. https://doi.org/10.1016/j.jbiotec.2009.01.016

    Article  Google Scholar 

  49. Islam MR, Rahman SME, Rahman MM et al (2010) The effects of biogas slurry on the production and quality of maize fodder. Turkish J Agric For 34:91–99. https://doi.org/10.3906/tar-0902-44

    Article  Google Scholar 

  50. Yadav A, Garg VK (2016) Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. Int J Recycl Org Waste Agric 5:301–309. https://doi.org/10.1007/s40093-016-0140-8

    Article  Google Scholar 

  51. Yu FB, Luo XP, Song CF, Shan SD (2010) Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agric Scand Sect B Soil Plant Sci 60:262–268. https://doi.org/10.1080/09064710902893385

    Article  Google Scholar 

  52. Min YY, Toyota K, Sato E, Takada A (2011) Effects of anaerobically digested slurry on Meloidogyne incognita and Pratylenchus penetrans in tomato and radish production. Appl Environ Soil Sci 2011:1–6. https://doi.org/10.1155/2011/528712

    Article  Google Scholar 

  53. Ferdous Z, Ullah H, Datta A et al (2018) Yield and profitability of tomato as influenced by integrated application of synthetic fertilizer and biogas slurry. Int J Veg Sci 24:445–455. https://doi.org/10.1080/19315260.2018.1434585

    Article  Google Scholar 

  54. Xu C, Tian Y, Sun Y, Dong L (2013) Effects of biogas slurry irrigation on growth, photosynthesis, and nutrient status of Perilla frutescens seedlings. Commun Soil Sci Plant Anal 44:3381–3390. https://doi.org/10.1080/00103624.2013.847447

    Article  Google Scholar 

  55. Yaraşır N (2018) Farklı dozlarda sıvı biyogaz atıklarının buğday (Triticum aestivum l.) bitkisinde verim ve kalite üzerine etkisi. Adnan Menderes Üniversitesi

  56. Şartlan H (2013) Hayvansal Kompost ve Biyogaz Atıklarının Toprak Enzim Aktivitesine Etkisi. Gaziosmanpaşa Üniversitesi

  57. Ronga D, Setti L, Salvarani C et al (2019) Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci Hortic (Amsterdam) 244:172–181. https://doi.org/10.1016/j.scienta.2018.09.037

    Article  Google Scholar 

  58. Endo R, Yamashita K, Shibuya T, Kitaya Y (2016) Use of methane fermentation digestate for hydroponic culture: analysis of potential inhibitors in digestate. Eco-Engineering 28:67–72. https://doi.org/10.11450/seitaikogaku.28.67

    Article  Google Scholar 

  59. Ehmann A, Bach IM, Bilbao J et al (2019) Phosphates recycled from semi-liquid manure and digestate are suitable alternative fertilizers for ornamentals. Sci Hortic (Amsterdam) 243:440–450. https://doi.org/10.1016/j.scienta.2018.08.052

    Article  Google Scholar 

  60. Koçar G, Baştabak B, Gündoğan Yağbasan B (2018) research of the usability of dried biogas fermented fertilizer in Solanum lycopersicon L. seedling production. Akad Mühhendislik ve Fen Bilim Dergisi, ICAE 2018 Özel Sayı 55–63

  61. Zhang XQ, Wu SB, Qu YH et al (2013) Use of solid digestate as a growing medium for tomato seedlings. Adv Mater Res 726–731:3001–3006. https://doi.org/10.4028/www.scientific.net/AMR.726-731.3001

    Article  Google Scholar 

  62. Do TCV, Scherer HW (2012) Compost and biogas residues as basic materials for potting substrates. Plant Soil Environ 58:459–464. https://doi.org/10.17221/445/2012-PSE

    Article  Google Scholar 

  63. Feng H, Qu GF, Ning P et al (2011) The resource utilization of anaerobic fermentation residue. Procedia Environ Sci 11:1092–1099. https://doi.org/10.1016/j.proenv.2011.12.165

    Article  Google Scholar 

  64. Zhao Y, Yang QS, Yang S et al (2014) Effects of biogas slurry pretreatment on germination and seedling growth of Vicia faba L. Adv Mater Res 955–959:208–212. https://doi.org/10.4028/www.scientific.net/AMR.955-959.208

    Article  Google Scholar 

  65. Kupper KC, Bettiol W, de Goes A et al (2006) Biofertilizer for control of Guignardia citricarpa, the causal agent of citrus black spot. Crop Prot 25:569–573. https://doi.org/10.1016/j.cropro.2005.09.002

    Article  Google Scholar 

  66. Jothi G, Pugalendhi S, Poornima K, Rajendran G (2003) Management of root-knot nematode in tomato Lycopersicon esculentum, Mill., with biogas slurry. Bioresour Technol 89:169–170. https://doi.org/10.1016/S0960-8524(03)00047-6

    Article  Google Scholar 

  67. Pan Z, Qi G, Andriamanohiarisoamanana FJ et al (2018) Potential of anaerobic digestate of dairy manure in suppressing soil-borne plant disease. Anim Sci J 89:1512–1518. https://doi.org/10.1111/asj.13092

    Article  Google Scholar 

  68. Nagarajan D, Lee D-J, Chang J-S (2019) Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresour Technol 290:121804. https://doi.org/10.1016/J.BIORTECH.2019.121804

    Article  Google Scholar 

  69. Enock TK, King’ondu CK, Pogrebnoi A, Jande YAC (2017) Biogas-slurry derived mesoporous carbon for supercapacitor applications. Mater Today Energy 5:126–137. https://doi.org/10.1016/j.mtener.2017.06.006

    Article  Google Scholar 

  70. Enock TK, King’ondu CK, Pogrebnoi A (2018) Effect of biogas-slurry pyrolysis temperature on specific capacitance. Mater Today Proc 5:10611–10620. https://doi.org/10.1016/j.matpr.2017.12.394

    Article  Google Scholar 

  71. Nagy D, Balogh P, Gabnai Z et al (2018) Economic analysis of pellet production in co-digestion biogas plants. Energies. https://doi.org/10.3390/en11051135

    Article  Google Scholar 

  72. Theuerl S, Herrmann C, Heiermann M et al (2019) The future agricultural biogas plant in Germany: a vision. Energies 12:1–32. https://doi.org/10.3390/en12030396

    Article  Google Scholar 

  73. Fagerström A, Al Seadi T, Rasi S, Briseid T (2018) The role of anaerobic digestion and biogas green gas in the circular economy

  74. Kumar S, Malav LC, Malav MK, Khan SA (2015) Biogas slurry: source of nutrients for eco- friendly agriculture biogas slurry: source of nutrients for eco-friendly agriculture. Int J Ext Res 2:42–46

    Google Scholar 

  75. Yazan DM, Cafagna D, Fraccascia L et al (2013) Economic sustainability of biogas production from animal manure: a regional circular economy model. Manag Res Rev 41:605–624. https://doi.org/10.1108/MRR-09-2015-0216

    Article  Google Scholar 

  76. Vaneeckhaute C, Lebuf V, Michels E et al (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valoriz 8:21–40. https://doi.org/10.1007/s12649-016-9642-x

    Article  Google Scholar 

  77. Gebrezgabher SA, Meuwissen MPM, Prins BAM, Lansink AGJMO (2010) Economic analysis of anaerobic digestion-a case of Green power biogas plant in the Netherlands. NJAS Wagening J Life Sci 57:109–115. https://doi.org/10.1016/j.njas.2009.07.006

    Article  Google Scholar 

  78. Herbes C, Roth U, Wulf S, Dahlin J (2020) Economic assessment of different biogas digestate processing technologies: a scenario-based analysis. J Clean Prod 255:120282. https://doi.org/10.1016/J.JCLEPRO.2020.120282

    Article  Google Scholar 

  79. Dahlin J, Beuthner C, Halbherr V et al (2019) Sustainable compost and potting soil marketing: private gardener preferences. J Clean Prod 208:1603–1612. https://doi.org/10.1016/J.JCLEPRO.2018.10.068

    Article  Google Scholar 

  80. Dahlin J, Nelles M, Herbes C (2017) Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments. Resour Conserv Recycl 118:27–38. https://doi.org/10.1016/J.RESCONREC.2016.11.020

    Article  Google Scholar 

  81. Watcharasukarn M, Kaparaju P, Steyer J et al (2019) Screening Escherichia coli, Enterococcus faecalis, and Clostridium perfringens as indicator organisms in evaluating pathogen-reducing capacity in biogas plants. Microb Ecol 58:221–230. https://doi.org/10.1007/s00248-009-9497-9

    Article  Google Scholar 

  82. Orzi V, Cadena E, Dimporzano G et al (2010) Potential odour emission measurement in organic fraction of municipal solid waste during anaerobic digestion: relationship with process and biological stability parameters. Bioresour Technol 101:7330–7337. https://doi.org/10.1016/j.biortech.2010.04.098

    Article  Google Scholar 

  83. Varel VH, Wells JE, Shelver WL et al (2012) Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure. J Appl Microbiol 112:705–715. https://doi.org/10.1111/j.1365-2672.2012.05250.x

    Article  Google Scholar 

  84. Tiwary A, Williams ID, Pant DC, Kishore VVN (2015) Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation. Renew Sustain Energy Rev 42:883–901. https://doi.org/10.1016/j.rser.2014.10.052

    Article  Google Scholar 

  85. Meyer-Aurich A, Schattauer A, Jürgen H et al (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37:277–284. https://doi.org/10.1016/j.renene.2011.06.030

    Article  Google Scholar 

  86. European Biogas Association (2016) Digestate factsheet : a value of organic fertiliser for Europe’s economy, society and environment

  87. Coelho JJ, Prieto ML, Dowling S et al (2018) Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag 78:8–15. https://doi.org/10.1016/j.wasman.2018.05.017

    Article  Google Scholar 

  88. Ma J, Zhu H, Fan M (2013) Distribution of heavy metals in pig farm biogas residues and the safety and feasibility assessment of fertilization. Int J Agric Biol Eng 6:35–43. https://doi.org/10.3965/j.ijabe.20130604.005

    Article  Google Scholar 

  89. Zhao HY, Li J, Liu JJ et al (2013) Microbial community dynamics during biogas slurry and cow manure compost. J Integr Agric 12:1087–1097. https://doi.org/10.1016/S2095-3119(13)60488-8

    Article  Google Scholar 

  90. Nag R, Auer A, Markey BK et al (2019) Anaerobic digestion of agricultural manure and biomass—critical indicators of risk and knowledge gaps. Sci Total Environ 690:460–479. https://doi.org/10.1016/j.scitotenv.2019.06.512

    Article  Google Scholar 

  91. Sakar S, Yetilmezsoy K, Kocak E (2009) Anaerobic digestion technology in poultry and livestock waste treatment—a literature review. Waste Manag Res 27:3–18. https://doi.org/10.1177/0734242X07079060

    Article  Google Scholar 

  92. Manyi-Loh CE, Mamphweli SN, Meyer EL et al (2013) Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health 10:4390–4417. https://doi.org/10.3390/ijerph10094390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benginur Baştabak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baştabak, B., Koçar, G. A review of the biogas digestate in agricultural framework. J Mater Cycles Waste Manag 22, 1318–1327 (2020). https://doi.org/10.1007/s10163-020-01056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01056-9

Keywords

Navigation