Log in

A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Electrodeposition is an old and effective method for the fabrication of organic films. Though electrodeposited organic films have been widely used in various applications, highly luminescent films have been a great challenge because the electrochemically doped state may strongly quench the fluorescence. In the first part of this review, the organic electrodeposition techniques, along with general electropolymerization and other special electrodepositions are introduced. In the second part of the review, we describe how to electrochemically fabricate luminescent films for organic light-emitting diodes (OLEDs). With the rational molecular design and well-controlled electrodeposition process, we have not only demonstrated high-performance OLEDs, but also paved a promising way to practice active-matrix OLEDs (AMOLEDs) and super-resolution OLEDs. In particular, RGB 3 × 3 array OLEDs based on active-matrix substrates, RGB passive-matrix OLEDs (PMOLEDs) with a resolution of 210 ppi, and monochromatic OLEDs with a super-resolution of 2822 ppi have been successfully fabricated. It is highly anticipated that the organic electrodeposition technology is of comparable or perhaps even higher contenders in manufacturing and downscaling OLEDs and AMOLEDs with low-cost and high-resolution for the human-computer interaction fields such as augmented reality (AR), virtual reality (VR), etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freudenberger, R. Electrodeposition of gold: a review. Galvanotechnik. 2012, 103, 1664–1672.

    CAS  Google Scholar 

  2. The Sigal process for electrodeposition of aluminium. AntiCorros. Methods Mater. 1985, 32, 13–13.

  3. Girginov, A.; Tzvetkoff, T. Z.; Bo**ov, M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. J. Appl. Electrochem. 1995, 25, 993–1003.

    Article  CAS  Google Scholar 

  4. Ogata, Y. H.; Kobayashi, K.; Motoyama, M. Electrochemical metal deposition on silicon. Curr. Opin. Solid State Mater. Sci. 2006, 10, 163–172.

    Article  CAS  Google Scholar 

  5. Srivastava, R. D.; Mukerjee, R. C. Electrodeposition of binary alloys: an account of recent developments. J. Appl. Electrochem. 1976, 6, 321–331.

    Article  CAS  Google Scholar 

  6. Srivastava, S. C. Electrodeposition of ternary alloys: Developments in 1972–1978. Surf. Technol. 1980, 10, 237–257.

    Article  CAS  Google Scholar 

  7. Srimathi, S. N.; Mayanna, S. M.; Sheshadri, B. S. Electrodeposition of binary magnetic alloys. Surf. Technol. 1982, 16, 277–322.

    Article  CAS  Google Scholar 

  8. **, Y.; Yu, H.; Liang, X. Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Appl. Phys. Rev. 2021, 8, 031301.

    Article  CAS  Google Scholar 

  9. Cao, Z.; Yang, S.; Wang, M.; Huang, X.; Li, H.; Yi, J.; Zhong, J. Cu(In,Ga)S2 absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent. Sol. Energy 2016, 139, 29–35.

    Article  CAS  Google Scholar 

  10. Turyan, I.; Mandler, D. Two-dimensional polyaniline thin film electrodeposited on a self-assembled monolayer. J. Am. Chem. Soc. 1998, 120, 10733–10742.

    Article  CAS  Google Scholar 

  11. Biallozor, S.; Kupniewska, A. Conducting polymers electrodeposited on active metals. Synth. Metals 2005, 155, 443–449.

    Article  CAS  Google Scholar 

  12. Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 2010, 110, 4724–4771.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, H.; Yao, M.; Wei, J.; Zhang, Y.; Zhang, S.; Gao, Y.; Li, J.; Lu, P.; Yang, B.; Ma, Y. Stable p/n-dopable conducting redox polymers for high-voltage pseudocapacitor electrode materials: structure-performance relationship and detailed investigation into charge-trap** effect. Adv. Energy Mater. 2017, 7, 1701063.

    Article  Google Scholar 

  14. Zhang, H.; Li, J.; Gu, C.; Yao, M.; Yang, B.; Lu, P.; Ma, Y. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by do** redox mediators in organogel electrolytes. J. Power Sources 2016, 332, 413–419.

    Article  CAS  Google Scholar 

  15. Zhang, H.; Zhang, Y.; Gu, C.; Ma, Y. Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv. Energy Mater. 2015, 5, 1402175.

    Article  Google Scholar 

  16. Huang, Q.; Chen, J.; Yan, S.; Shao, X.; Dong, Y.; Liu, J.; Li, W.; Zhang, C. New donor-acceptor-donor conjugated polymer with twisted donor-acceptor configuration for high-capacitance electrochromic supercapacitor application. ACS Sustain. Chem. Eng. 2021, 9, 13807–13817.

    Article  CAS  Google Scholar 

  17. Li, M.; Patra, A.; Sheynin, Y.; Bendikov, M. Hexyl-derivatized poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage. Adv. Mater. 2009, 21, 1707–1711.

    Article  CAS  Google Scholar 

  18. Ma, W.; Qin, L.; Gao, Y.; Zhang, W.; **e, Z.; Yang, B.; Liu, L.; Ma, Y. A perylene bisimide network for high-performance n-type electrochromism. Chem. Commun. 2016, 52, 13600–13603.

    Article  CAS  Google Scholar 

  19. Wang, J.; Ma, W.; Wang, H.; **e, Z.; Zhang, H.; Ma, Y. A cathodic electrochromic material based on thick perylene bisimide film with high optical contrast and high stability. CCS Chem. 2021, 4, 1347–1356.

    Article  Google Scholar 

  20. Wang, J.; Zhang, H.; Ma, Y. Thickness dependence of do** level in conducting polymer films: the optical contrast optimization in electrochromism as a case study. Chin. J. Chem. 2022, 40, 597–602.

    Article  CAS  Google Scholar 

  21. Wang, B.; Wang, L.; Chen, H.; Jia, Y.; Ma, Y. Electropolymerized triphenylamine network films for high-performance transparent to black electrochromism and capacitance. Adv. Opt. Mater. 2022, https://doi.org/10.1002/adom.202201572.

  22. Yan, S.; Fu, H.; Zhang, L.; Dong, Y.; Li, W.; Ouyang, M.; Zhang, C. Conjugated polymer multilayer by in situ electrochemical polymerization for black-to-transmissive eletrochromism. Chem. Eng. J. 2021, 406, 126819.

    Article  CAS  Google Scholar 

  23. Li, M.; Zhang, J.; Nie, H. J.; Liao, M.; Sang, L.; Qiao, W.; Wang, Z. Y.; Ma, Y.; Zhong, Y. W.; Ariga, K. In situ switching layer-by-layer assembly: one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization. Chem. Commun. 2013, 49, 6879–6881.

    Article  CAS  Google Scholar 

  24. Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 2013, 25, 3443–3448.

    Article  CAS  PubMed  Google Scholar 

  25. Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhong, C.; Zhang, H.; Lv, Y.; Li, F.; Huang, F.; Ma, Y. Achieving high efficiency of PTB7-based polymer solar cells via integrated optimization of both anode and cathode interlayers. Adv. Energy Mater. 2014, 4, 1301771.

    Article  Google Scholar 

  26. Gu, C.; Zhang, Z.; Sun, S.; Pan, Y.; Zhong, C.; Lv, Y.; Li, M.; Ariga, K.; Huang, F.; Ma, Y. In situ electrochemical deposition and do** of C60 films applied to high-performance inverted organic photovoltaics. Adv. Mater. 2012, 24, 5727–5731.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, M.; Zhang, H.; Gu, C.; Ma, Y. Electrochemical polymerization: an emerging approach for fabricating high-quality luminescent films and super-resolution OLEDs. J. Mater. Chem. C 2020, 8, 5310–5320.

    Article  CAS  Google Scholar 

  28. Bard, A.; Faulkner, L. In Electrochemical methods: fundamentals and applications, 2nd Ed., John Wiley & Sons, New York, 2001, p. 226–243.

    Google Scholar 

  29. Bard, A.; Faulkner, L. In Electrochemical methods: fundamentals and applications, 2nd Ed., John Wiley & Sons, New York, 2001, p. 589–593.

    Google Scholar 

  30. Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341.

    Article  CAS  PubMed  Google Scholar 

  31. Le, T.-H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heinze, J. In Electronically conducting polymers, Electrochemistry IV, Ed. by Steckhan, E., Springer, Berlin Heidelberg, 1990; p 1–47.

    Google Scholar 

  33. Diaz, A. F.; Logan, J. A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 111–114.

    Article  CAS  Google Scholar 

  34. Genies, E. M.; Syed, A. A. Polypyrrole and poly N-methylpyrrole—an electrochemical study in an aqueous medium. Synth. Metals 1984, 10, 21–30.

    Article  CAS  Google Scholar 

  35. Vorotyntsev, M. A.; Heinze, J. Charging process in electron conducting polymers: dimerization model. Electrochim. Acta 2001, 46, 3309–3324.

    Article  CAS  Google Scholar 

  36. Villeret, B.; Nechtschein, M. Memory effects in conducting polymers. Phys. Rev. Lett. 1989, 63, 1285–1287.

    Article  CAS  PubMed  Google Scholar 

  37. Kalaji, M.; Nyholm, L.; Peter, L. M. Chronopotentiometric studies of polyaniline films. J. Electroanal. Chem. 1992, 325, 269–284.

    Article  CAS  Google Scholar 

  38. Zotti, G.; Schiavon, G.; Zecchin, S. Irreversible processes in the electrochemical reduction of polythiophenes. Chemical modifications of the polymer and charge-trap** phenomena. Synth. Metals 1995, 72, 275–281.

    Article  CAS  Google Scholar 

  39. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. Electrochemical polymerization of pyrrole. J. Chem. Soc., Chem. Commun. 1979, 635–636.

  40. Tourillon, G.; Garnier, F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. Interfacial Electrochem. 1982, 135, 173–178.

    Article  CAS  Google Scholar 

  41. Ambrose, J. F.; Nelson, R. F. Anodic oxidation pathways of carbazoles: I. Carbazole and N-substituted derivatives. J. Electrochem. Soc. 1968, 115, 1159.

    Article  CAS  Google Scholar 

  42. Utley, J. H. P.; Gruber, J. Electrochemical synthesis of poly(p-xylylenes) (PPXs) and poly(p-phenylenevinylenes) (PPVs) and the study of xylylene (quinodimethane) intermediates; an underrated approach. J. Mater. Chem. 2002, 12, 1613–1624.

    Article  CAS  Google Scholar 

  43. Bandeira, M. C. E.; Crayston, J. A.; Franco, C. V.; Glidle, A. Electrochemical deposition of poly(trans-[RuCl2(4-vinylpyridine)4]) and its reductive desorption: cyclic voltammetry and electrochemical quartz crystal microbalance studies. Phys. Chem. Chem. Phys. 2007, 9, 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  44. Li, M.; Kang, S.; Du, J.; Zhang, J.; Wang, J.; Ariga, K. Junction-controlled topological polymerization. Angew. Chem. Int. Ed. 2018, 57, 4936–4939.

    Article  CAS  Google Scholar 

  45. Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J. F.; Leclerc, M. Electrochemical, conductive, and magnetic properties of 2,7-carbazole-based conjugated polymers. Macromolecules 2002, 35, 2122–2128.

    Article  CAS  Google Scholar 

  46. Iraqi, A.; Wataru, I. Preparation and properties of 2,7-linked N-alkyl-9H-carbazole main-chain polymers. Chem. Mater. 2004, 16, 442–448.

    Article  CAS  Google Scholar 

  47. Fu, Y.; Bo, Z. Synthesis, optical, and electrochemical properties of the high-molecular-weight conjugated polycarbazoles. Macromol. Rapid Commun. 2005, 26, 1704–1710.

    Article  CAS  Google Scholar 

  48. Downard, A. J.; Pletcher, D. A study of the conditions for the electrodeposition of polythiophen in acetonitrile. J. Electroanal. Chem. Interfacial Electrochem. 1986, 206, 147–152.

    Article  CAS  Google Scholar 

  49. Hwang, B. J.; Santhanam, R.; Wu, C. R.; Tsai, Y. W. Nucleation and growth mechanism for the electropolymerization of aniline in trifluoroacetic acid/lithium perchlorate/propylene carbonate medium. J. Solid State Electrochem. 2003, 7, 678–683.

    Article  CAS  Google Scholar 

  50. Bund, A.; Baba, A.; Berg, S.; Johannsmann, D.; Lübben, J.; Wang, Z.; Knoll, W. Combining surface plasmon resonance and quartz crystal microbalance for the in situ investigation of the electropolymerization and do**/dedo** of poly(pyrrole). J. Phys. Chem. B 2003, 107, 6743–6747.

    Article  CAS  Google Scholar 

  51. Kvarnström, C.; Bilger, R.; Ivaska, A.; Heinze, J. An electrochemical quartz crystal microbalance study on polymerization of oligo-p-phenylenes. Electrochim. Acta 1998, 43, 355–366.

    Article  Google Scholar 

  52. Karon, K.; Lapkowski, M. Carbazole electrochemistry: a short review. J. Solid State Electrochem. 2015, 19, 2601–2610.

    Article  CAS  Google Scholar 

  53. Tanaka, K.; Shichiri, T.; Wang, S.; Yamabe, T. A study of the electropolymerization of thiophene. Synth. Metals 1988, 24, 203–215.

    Article  CAS  Google Scholar 

  54. Diaz, A. F.; Castillo, J. I.; Logan, J. A.; Lee, W. Y. Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 1981, 129, 115–132.

    Article  CAS  Google Scholar 

  55. Genies, E. M.; Bidan, G.; Diaz, A. F. Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 1983, 149, 101–113.

    Article  CAS  Google Scholar 

  56. Heinze, J.; John, H.; Dietrich, M.; Tschuncky, P. σ-“Dimers”—key intermediates and products during generation and redox switching of conjugated oligomers and polymers. Synth. Met. 2001, 119, 49–52.

    Article  CAS  Google Scholar 

  57. Audebert, P.; Hapiot, P. Fast electrochemical studies of the polymerization mechanisms of pyrroles and thiophenes. Identification of the first steps. Existence of π-dimers in solution. Synth. Metals 1995, 75, 95–102.

    Article  CAS  Google Scholar 

  58. Guyard, L.; Hapiot, P.; Neta, P. Redox chemistry of bipyrroles: further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles. J. Phys. Chem. B 1997, 101, 5698–5706.

    Article  CAS  Google Scholar 

  59. Andrieux, C. P.; Audebert, P.; Hapiot, P.; Saveant, J. M. Observation of the cation radicals of pyrrole and of some substituted pyrroles in fast-scan cyclic voltammetry. Standard potentials and lifetimes. J. Am. Chem. Soc. 1990, 112, 2439–2440.

    Article  CAS  Google Scholar 

  60. Garcia, P.; Pernaut, J. M.; Hapiot, P.; Wintgens, V.; Valat, P.; Garnier, F.; Delabouglise, D. Effect of end substitution on electrochemical and optical properties of oligothiophenes. J. Phys. Chem. 1993, 97, 513–516.

    Article  CAS  Google Scholar 

  61. Asavapiriyanont, S.; Chandler, G. K.; Gunawardena, G. A.; Pletcher, D. The electrodeposition of polypyrrole films from aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 229–244.

    Article  CAS  Google Scholar 

  62. El-Desoky, H.; Heinze, J.; Ghoneim, M. M. Electrodimerization of cyano-substituted derivatives of anthracene and naphthalene. Electrochem. Commun. 2001, 3, 697–702.

    Article  CAS  Google Scholar 

  63. Smie, A.; Heinze, J. Reversible dimerization of diphenylpolyene radical cations: an alternative to the bipolaron model. Angew. Chem. Int. Ed. 1997, 36, 363–367.

    Article  CAS  Google Scholar 

  64. Heinze, J.; Willmann, C.; Bäuerle, P. Evidence for σ dimerization during anodic redox switching of 1,3,5-tripyrrolidinobenzene: a new molecular switch. Angew. Chem. Int. Ed. 2001, 40, 2861–2864.

    Article  CAS  Google Scholar 

  65. Merz, A.; Kronberger, J.; Dunsch, L.; Neudeck, A.; Petr, A.; Parkanyi, L. Radical dimerization of 5,5′-diphenyl-3,3′,4,4′-tetramethoxy-2,2′-bipyrrole: π dimer in the crystal, σ dimer in solution. Angew. Chem. Int. Ed. 1999, 38, 1442–1446.

    Article  CAS  Google Scholar 

  66. Andrieux, C. P.; Hapiot, P.; Audebert, P.; Guyard, L.; Dinh An, M. N.; Groenendaal, L.; Meijer, E. W. Substituent effects on the electrochemical properties of pyrroles and small oligopyrroles. Chem. Mater. 1997, 9, 723–729.

    Article  CAS  Google Scholar 

  67. Meerholz, K.; Heinze, J. Electrochemical solution and solid-state investigations on conjugated oligomers and polymers of the α-thiophene and the p-phenylene series. Electrochim. Acta 1996, 41, 1839–1854.

    Article  CAS  Google Scholar 

  68. Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole. 3. Nature of “water effect” in acetonitrile. J. Phys. Chem. B 1999, 103, 8451–8457.

    Article  CAS  Google Scholar 

  69. Zotti, G.; Schiavon, G.; Berlin, A.; Pagani, G. The role of water in the electrochemical polymerization of pyrroles. Electrochim. Acta 1989, 34, 881–884.

    Article  CAS  Google Scholar 

  70. Beck, F.; Oberst, M.; Jansen, R. On the mechanism of the filmforming electropolymerization of pyrrole in acetonitrile with water. Electrochim. Acta 1990, 35, 1841–1848.

    Article  CAS  Google Scholar 

  71. Heinze, J.; Mortensen, J.; Hinkelmann, K. Some new electrochemical results on the properties of conducting polymers. Synth. Metals 1987, 21, 209–214.

    Article  CAS  Google Scholar 

  72. Obretenov, W.; Schmidt, U.; Lorenz, W. J.; Staikov, G.; Budevski, E.; Carnal, D.; Müller, U.; Siegenthaler, H.; Schmidt, E. Underpotential deposition and electrocrystallization of metals an atomic view by scanning tunneling microscopy. J. Electrochem. Soc. 1993, 140, 692.

    Article  CAS  Google Scholar 

  73. Fleischmann, M.; and H. R. Thirsk. In Advances in Electrochemistry and Electrochemical Engineering, Wiley-Interscience, New York, 1963, p. 123.

    Google Scholar 

  74. Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B. On the origin of the so-called nucleation loop during electropolymerization of conducting polymers. J. Phys. Chem. B 2007, 111, 989–997.

    Article  CAS  PubMed  Google Scholar 

  75. Randriamahazaka, H.; Sini, G.; Tran Van, F. Electrodeposition mechanisms and electrochemical behavior of poly(3,4-ethylenedithiathiophene). J. Phys. Chem. C 2007, 111, 4553–4560.

    Article  CAS  Google Scholar 

  76. Andrieux, C. P.; Dumas-Bouchiat, J. M.; Saveant, J. M. Homogeneous redox catalysis of electrochemical reactions: Part I. Introduction. J. Electroanal. Chem. Interfacial Electrochem. 1978, 87, 39–53.

    Article  CAS  Google Scholar 

  77. del Valle, M. A.; Cury, P.; Schrebler, R. Solvent effect on the nucleation and growth mechanisms of poly(thiophene). Electrochim. Acta 2002, 48, 397–405.

    Article  CAS  Google Scholar 

  78. Villareal, I.; Morales, E.; Acosta, J. L. Nucleation and growth of LiCF3SO3-doped polyalkylthiophenes. Polymer 2001, 42, 3779–3789.

    Article  CAS  Google Scholar 

  79. Bade, K.; Tsakova, V.; Schultze, J. W. Nucleation, growth and branching of polyaniline from microelectrode experiments. Electrochim. Acta 1992, 37, 2255–2261.

    Article  CAS  Google Scholar 

  80. Hwang, B. J.; Santhanam, R.; Lin, Y. L. Nucleation and growth mechanism of electropolymerization of polypyrrole on gold/highly oriented pyrolytic graphite electrode. J. Electrochem. Soc. 2000, 147, 2252.

    Article  CAS  Google Scholar 

  81. Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R. In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode. Electrochim. Acta 2005, 50, 1497–1503.

    Article  CAS  Google Scholar 

  82. Meerholz, K.; Heinze, J. Electrochemical solid-state studies on oligomeric p-phenylenes as model compounds for conductive polymers. Angew. Chem. Int. Ed. 1990, 29, 692–695.

    Article  Google Scholar 

  83. Li, M. C3–C3′ and C6–C6 ′ oxidative couplings of carbazoles. Chem. Eur. J. 2019, 25, 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Y.; Li, M. Controlled electropolymerization based on self-dimerizations of monomers. Curr. Opin. Electrochem. 2022, 33, 100952.

    Article  CAS  Google Scholar 

  85. Shi, G.; **, S.; Xue, G.; Li, C. A conducting polymer film stronger than aluminum. Science 1995, 267, 994–996.

    Article  CAS  PubMed  Google Scholar 

  86. Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18.

    Article  CAS  Google Scholar 

  87. Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. Electrochemical sensors. Anal. Chem. 2010, 82, 4723–4741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan, S.; Fu, H.; Dong, Y.; Li, W.; Dai, Y.; Zhang, C. Synthesis, electrochemistry and electrochromic properties of donor-acceptor conjugated polymers based on swivel-cruciform monomers with different central cores. Electrochim. Acta 2020, 354, 136672.

    Article  CAS  Google Scholar 

  89. Li, W.; Yuan, F.; Xu, N.; Mei, S.; Chen, Z.; Zhang, C. Triphenylamine-triazine polymer materials obtained by electrochemical polymerization: electrochemistry stability, anions trap** behavior and electrochromic-supercapacitor application. Electrochim. Acta 2021, 384, 138344.

    Article  CAS  Google Scholar 

  90. Li, M.; Tang, S.; Shen, F.; Liu, M.; **e, W.; **a, H.; Liu, L.; Tian, L.; **e, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem. Commun. 2006, 32, 3393–3395.

    Article  Google Scholar 

  91. Maeda, H.; Sakamoto, R.; Nishihara, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017, 346, 139–149.

    Article  CAS  Google Scholar 

  92. Wang, J.; Wei, C.; Li, S.; Hao, Q.; Shi, J.; Liu, J.; Li, L.; Chen, Y.; Wang, Y.; Li, Y.; Shen, L.; Zhang, X.; Hong, W.; Li, M. Monolayer nanoarchitecture of crystalline metallopolymers by electrochemical iterative growth. Cell Rep. Phys. Sci. 2022, 3, 100852.

    Article  CAS  Google Scholar 

  93. Zhang, J.; Du, J.; Wang, J.; Wang, Y.; Wei, C.; Li, M. Vertical step-growth polymerization driven by electrochemical stimuli from an electrode. Angew. Chem. Int. Ed. 2018, 57, 16698–16702.

    Article  CAS  Google Scholar 

  94. Wang, J.; Zhang, H.; Li, S.; Ding, C.; Zhao, Y.; Long, X.; Wei, C.; Wang, Y.; Li, Y.; Shen, L.; Cui, S.; Hong, W.; Li, M. Crystalline unipolymer monolayer with high modulus and conductivity. Angew. Chem. Int. Ed. 2022, n/a, e202216838.

  95. Zhang, J.; Wang, J.; Wei, C.; Wang, Y.; **e, G.; Li, Y.; Li, M. Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nat. Commun. 2020, 11, 2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643.

    Article  CAS  PubMed  Google Scholar 

  97. Müllen, K. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS Nano 2014, 8, 6531–6541.

    Article  PubMed  Google Scholar 

  98. Seyler, H.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H. Hexa-peri-hexabenzocoronene in organic electronics. Pure Appl. Chem. 2012, 84, 1047–1067.

    Article  CAS  Google Scholar 

  99. Wu, J.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747.

    Article  CAS  PubMed  Google Scholar 

  100. Qin, L.; Zhang, Y.; Wu, X.; Nian, L.; **e, Z.; Liu, L.; Ma, Y. In situ electrochemical synthesis and deposition of discotic hexa-perihexabenzocoronene molecules on electrodes: self-assembled structure, redox properties, and application for supercapacitor. Small 2015, 11(3028)-3034.

    Google Scholar 

  101. Zeng, C.; Wang, B.; Zhang, H.; Sun, M.; Huang, L.; Gu, Y.; Qiu, Z.; Müllen, K.; Gu, C.; Ma, Y. Electrochemical synthesis, deposition, and do** of polycyclic aromatic hydrocarbon films. J. Am. Chem. Soc. 2021, 143, 2682–2687.

    Article  CAS  PubMed  Google Scholar 

  102. Röse, P.; Emge, S.; König, C. A.; Hilt, G. Efficient oxidative coupling of arenes via electrochemical regeneration of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) under mild reaction conditions. Adv. Synth. Catal. 2017, 359, 1359–1372.

    Article  Google Scholar 

  103. Zeng, C.; Zheng, W.; Xu, H.; Osella, S.; Ma, W.; Wang, H. I.; Qiu, Z.; Otake, K. I.; Ren, W.; Cheng, H.; Müllen, K.; Bonn, M.; Gu, C.; Ma, Y. Electrochemical deposition of a single-crystalline nanorod polycyclic aromatic hydrocarbon film with efficient charge and exciton transport. Angew. Chem. Int. Ed. 2022, 61, e202115389.

    Article  CAS  Google Scholar 

  104. Wang, L.; Xu, C.; Zhang, W.; Zhang, Q.; Zhao, M.; Zeng, C.; Jiang, Q.; Gu, C.; Ma, Y. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films. J. Am. Chem. Soc. 2022, 144, 8961–8968.

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh, A.; Donoghue, E. P.; Khayrullin, I.; Ali, T.; Wacyk, I.; Tice, K.; Vazan, F.; Sziklas, L.; Fellowes, D.; Draper, R. Directly patterened 2645 PPI full color OLED microdisplay for head mounted wearables. SID Symp. Dig. Tech. Pap. 2016, 47, 837–840.

    Article  Google Scholar 

  106. Östergård, T.; Kvarnström, C.; Stubb, H.; Ivaska, A. Electrochemically prepared light-emitting diodes of poly(para-phenylene). Thin Solid Films 1997, 311, 58–61.

    Article  Google Scholar 

  107. Damlin, P.; Östergård, T.; Ivaska, A.; Stubb, H. Light-emitting diodes of poly(p-phenylene vinylene) films electrochemically polymerized by cyclic voltammetry on ITO. Synth. Metals 1999, 102, 947–948.

    Article  CAS  Google Scholar 

  108. Lu, G.; Shi, G. Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem. 2006, 586, 154–160.

    Article  CAS  Google Scholar 

  109. **a, C.; Advincula, R. C.; Baba, A.; Knoll, W. Electrochemical patterning of a polyfluorene precursor polymer from a microcontact printed (μCP) monolayer. Chem. Mater. 2004, 16, 2852–2856.

    Article  CAS  Google Scholar 

  110. Tang, S.; Liu, M. R.; Lu, P.; **a, H.; Li, M.; **e, Z. Q.; Shen, F. Z.; Gu, C.; Wang, H. P.; Yang, B.; Ma, Y. G. A molecular glass for deep-blue organic light-emitting diodes comprising a 9,9′-spirobifluorene core and peripheral carbazole groups. Adv. Funct. Mater. 2007, 17, 2869–2877.

    Article  CAS  Google Scholar 

  111. Tang, S.; Liu, M.; Gu, C.; Zhao, Y.; Lu, P.; Lu, D.; Liu, L.; Shen, F.; Yang, B.; Ma, Y. Synthesis and electrochemical properties of peripheral carbazole functional ter(9,9-spirobifluorene)s. J. Org. Chem. 2008, 73, 4212–4218.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, M.; Xue, S.; Dong, W.; Wang, Q.; Fei, T.; Gu, C.; Ma, Y. Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chem. Commun. 2010, 46, 3923–3925.

    Article  CAS  Google Scholar 

  113. Sezai Sarac, A.; Ates, M.; Parlak, E. A. Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrodes. J. Appl. Electrochem. 2006, 36, 889–898.

    Article  Google Scholar 

  114. Li, M.; Tang, S.; Shen, F.; Liu, M.; **e, W.; **a, H.; Liu, L.; Tian, L.; **e, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. Electrochemically deposited organic luminescent films: the effects of deposition parameters on morphologies and luminescent efficiency of films. J. Phys. Chem. B 2006, 110, 17784–17789.

    Article  CAS  PubMed  Google Scholar 

  115. Wei, Z.; Xu, J.; Nie, G.; Du, Y.; Pu, S. Low-potential electrochemical polymerization of carbazole and its alkyl derivatives. J. Electroanal. Chem. 2006, 589, 112–119.

    Article  CAS  Google Scholar 

  116. Gu, C.; Tang, S.; Yang, B.; Liu, S.; Lv, Y.; Wang, H.; Yang, S.; Hanif, M.; Lu, D.; Shen, F.; Ma, Y. Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochim. Acta 2009, 54, 7006–7011.

    Article  CAS  Google Scholar 

  117. Gu, C. Controllable Fabrications of Highly Fluorescent Electrochemical Polymerization Films and Their Electroluminescent Devices, Thesis, Jilin University, 2012.

  118. Li, M.; Tang, S.; Shen, F.; Liu, M.; Li, F.; Lu, P.; Lu, D.; Hanif, M.; Ma, Y. The counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films. J. Electrochem. Soc. 2008, 155, H287.

    Article  CAS  Google Scholar 

  119. Li, M. The Application of Cyclic Voltammetry in Electrosynthesis and Analysis of Organic Luminescent Materials, Thesis, Jilin University, 2007.

  120. Gu, C.; Fei, T.; Zhang, M.; Li, C.; Lu, D.; Ma, Y. Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel. Electrochem. Commun. 2010, 12, 553–556.

    Article  CAS  Google Scholar 

  121. Lv, Y.; Yao, L.; Gu, C.; Xu, Y.; Zhang, Y.; **e, Z.; Liu, L.; Ma, Y. Cross-linked luminescent films via electropolymerization of multifunctional precursors for highly efficient electroluminescence. Polym. Chem. 2013, 4, 2090–2096.

    Article  CAS  Google Scholar 

  122. Lv, Y. Electrodeposited Patterning Organic Luminescent Films and Their Applications for Display Devices, Thesis, Jilin University, 2013.

  123. Gu, C.; Dong, W.; Yao, L.; Lv, Y.; Zhang, Z.; Lu, D.; Ma, Y. Cross-linked multifunctional conjugated polymers prepared by in situ electrochemical deposition for a highly-efficient blue-emitting and electron-transport layer. Adv. Mater. 2012, 24, 2413–2417.

    Article  CAS  PubMed  Google Scholar 

  124. Gu, C.; Fei, T.; Lv, Y.; Feng, T.; Xue, S.; Lu, D.; Ma, Y. Color-stable white electroluminescence based on a cross-linked network film prepared by electrochemical copolymerization. Adv. Mater. 2010, 22, 2702–2705.

    Article  CAS  PubMed  Google Scholar 

  125. Sax, S.; Rugen-Penkalla, N.; Neuhold, A.; Schuh, S.; Zojer, E.; List, E. J. W.; Müllen, K. Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Adv. Mater. 2010, 22, 2087–2091.

    Article  CAS  PubMed  Google Scholar 

  126. Köhnen, A.; Riegel, N.; Kremer, J. H. W. M.; Lademann, H.; Müller, D. C.; Meerholz, K. The simple way to solution-processed multilayer OLEDs—layered block-copolymer networks by living cationic polymerization. Adv. Mater. 2009, 21, 879–884.

    Article  Google Scholar 

  127. Gu, C.; Fei, T.; Yao, L.; Lv, Y.; Lu, D.; Ma, Y. Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence. Adv. Mater. 2011, 23, 527–530.

    Article  CAS  PubMed  Google Scholar 

  128. Gu, C.; Liu, H.; Hu, D.; Zhang, W.; Lv, Y.; Lu, P.; Lu, D.; Ma, Y. Controllable optical, electrical, and morphologic properties of 3,4-ethylenedioxythiophene based electrocopolymerization films. Macromol. Rapid Commun. 2011, 32, 1014–1019.

    Article  CAS  PubMed  Google Scholar 

  129. Li, M.; Tang, S.; Lu, D.; Shen, F.; Liu, M.; Wang, H.; Lu, P.; Hanif, M.; Ma, Y. Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes. Semicond. Sci. Technol. 2007, 22, 855.

    Article  CAS  Google Scholar 

  130. Lv, Y.; Yao, L.; Gu, C.; Xu, Y.; Liu, D.; Lu, D.; Ma, Y. Electroactive self-assembled monolayers for enhanced efficiency and stability of electropolymerized luminescent films and devices. Adv. Funct. Mater. 2011, 21, 2896–2900.

    Article  CAS  Google Scholar 

  131. R.Wang. Application of Electrochemical Polymerization Luminescent Films in Organic Light-emitting Display and Their Basic Issues, Thesis, Jilin University, 2018.

  132. Wang, R.; Zhang, D.; **ong, Y.; Zhou, X.; Liu, C.; Chen, W.; Wu, W.; Zhou, L.; Xu, M.; Wang, L.; Liu, L.; Peng, J.; Ma, Y.; Cao, Y. TFT-directed electroplating of RGB luminescent films without a vacuum or mask toward a full-color AMOLED pixel matrix. ACS Appl. Mater. Interfaces 2018, 10, 17519–17525.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U20A6002 and 21733005), the National Key R&D Program of China (No. 2020YFA0714604), the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), Research and Development Funds for Science and Technology Program of Guangzhou (No. 202007020004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Ma.

Additional information

Notes

The authors declare no competing financial interest.

Biography

Yu-Guang Ma received his Ph.D. of polymer chemistry and physics in Jilin University in 1991 and continued his research as a post doctor. Then he earned a faculty position in Jilin University until 2012 and was promoted professor in 1998. He has been supported by Outstanding Young Investigator Fund and Chang-Jiang Scholar, and won the State Natural Science Award (2nd prize) of China. He is now the director of the State Key Laboratory of Luminescent Materials and Devices (SKLLMD) at South China University of Technology. He focuses on organic electronics involves organic electro-phosphorescence, hotexciton materials, and electrochemical polymerization of organic semiconductor films.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BH., Ma, YG. & Cao, Y. A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology. Chin J Polym Sci 41, 621–639 (2023). https://doi.org/10.1007/s10118-023-2964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2964-9

Keywords

Navigation