Log in

Nucleation and growth mechanism for the electropolymerization of aniline in trifluoroacetic acid/lithium perchlorate/propylene carbonate medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the nucleation and growth mechanism for the electropolymerization of aniline in propylene carbonate medium containing 0.06 M trifluoroacetic acid and 0.05 M lithium perchlorate was investigated at different potentials on highly oriented pyrolytic graphite (HOPG) by potentiostatic current-time transients (i-t) and atomic force microscopic (AFM) measurements. The electrochemical data fitted with the theoretical curves for nucleation and growth suggest that the electropolymerization of aniline consists of progressive nucleation followed by 3D growth at an early stage and layer-by-layer growth in subsequent periods. The results obtained from transient analysis were in good agreement with the results of the AFM analysis. In our previous studies with aqueous solutions, we observed only progressive nucleation followed by a 3D growth mechanism for the electropolymerization of aniline in a higher potential range, 1.5–2.0 V vs. Ag/AgCl. Hence, the results obtained from the present work indicate that the nucleation and growth mechanism depends on the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Zotti G, Cattarin S, Comisso N (1988) J Electroanal Chem 239:387

    Article  CAS  Google Scholar 

  2. Duic L, Mandic Z, Kovacicek F (1994) J Polym Sci Part A 32:105

    CAS  Google Scholar 

  3. Duic L, Mandic Z (1992) J Electroanal Chem 335:207

    Article  CAS  Google Scholar 

  4. Fleischmann M, Thirsk HR (1963) In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 3. Wiley-Interscience, New York, pp 00

  5. Harrison JA, Thirsk H R (1971) In: Bard AJ (ed) Electroanalytical chemistry, vol 5. Dekker, New York, pp 00

  6. Budevski EB (1983) In: Conway BE, Bockris JO'M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise on electrochemistry, vol 7. Plenum, New York, pp 00

  7. De Levie R, (1984) In: Gerischer H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 13. Wiley, New York, pp 00

  8. Bade K, Sakova WT, Schultze JW (1992) Electrochim Acta 37:2255

    Article  CAS  Google Scholar 

  9. Mandic Z, Duic L, Kovacicek F (1997) Electrochim Acta 42:1389

    Article  CAS  Google Scholar 

  10. Marcus ML, Rodroguez I, Velasco JG (1987) Electrochim Acta 32:1453

    Article  Google Scholar 

  11. Miller LL, Zinger B, Zhou QX (1987) J Am Chem Soc 109:2267

    CAS  Google Scholar 

  12. Asavapiriyanont S, Chandler GK, Gunawardena GA, Pletcher D (1984) J Electroanal Chem 177:229

    Article  CAS  Google Scholar 

  13. Hamnett A, Hillman AR (1988) J Electrochem Soc 135:2517

    CAS  Google Scholar 

  14. Downard AJ, Pletcher D (1986) J Electroanal Chem 206:139

    Article  CAS  Google Scholar 

  15. Hillmann AR, Mallen EF (1987) J Electroanal Chem 220:351

    Article  Google Scholar 

  16. Hillmann AR, Swann MJ (1988) Electrochim Acta 33:1303

    Article  Google Scholar 

  17. Hillmann AR, Mallen EF (1988) J Electroanal Chem 243:403

    Article  Google Scholar 

  18. Li FB, Albery WJ (1992) Langmuir 8:1645

    CAS  Google Scholar 

  19. Li FB, Albery WJ (1992) Electrochim Acta 37:393

    Article  CAS  Google Scholar 

  20. Kontturi K, Pohjakallio M, Sundholm G, Vieil E (1995) J Electroanal Chem 384:67

    Article  CAS  Google Scholar 

  21. Cai XW, Gao JS, **e ZX, Tian ZQ, Mao BW (1998) Langmuir 14:2508

    Article  CAS  Google Scholar 

  22. Hwang BJ, Santhanam R, Lin YL (2000) J Electrochem Soc 147:2252

    Article  CAS  Google Scholar 

  23. Hwang BJ, Santhanam R, Lin YL (2001) Electrochim Acta 46:2843

    Article  CAS  Google Scholar 

  24. Hwang BJ, Santhanam R, Wu CR, Tsai YW (2001) Electroanalysis 13:37

    Article  CAS  Google Scholar 

  25. Hwang BJ, Santhanam R, Wu CR, Tsai YW (2001) J Solid State Electrochem 5:280

    Article  CAS  Google Scholar 

  26. Harrison JA, Thirsk HR (1971) In: Bard AJ (ed) Electroanalytical chemistry, vol 5. Dekker, New York, pp 67, 95, 96

  27. Downard AJ, Pletcher D (1986) J Electroanal Chem 206:139

    Article  CAS  Google Scholar 

  28. Downard AJ, Pletcher D (1986) J Electroanal Chem 206:147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Council (NSC 89-2214-E-011–012 & NSC 89-TPC-7-011-008) and the National Taiwan University of Science and Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Joe Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, BJ., Santhanam, R., Wu, CR. et al. Nucleation and growth mechanism for the electropolymerization of aniline in trifluoroacetic acid/lithium perchlorate/propylene carbonate medium. J Solid State Electrochem 7, 678–683 (2003). https://doi.org/10.1007/s10008-003-0370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0370-3

Keywords

Navigation