Log in

A Microstructure-based Simulation Environment on the Basis of an Interface Enhanced Particle Model

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The present contribution introduces enhanced discrete element simulation methodologies (DEM) with a special focus on a microstructure-based model environment. Therewith, it is possible to represent the failure of cohesive granular materials like concrete, ceramics or marl in a qualitative as well as quantitative manner. Starting from a basic polygonal two-dimensional particle model for non-cohesive granular materials, more complex models for cohesive materials are obtained by inclusion of beam or interface elements between corresponding particles. In particular, we will introduce an interface enhanced DEM methodology where a standard ingredient of computational mechanics, namely interface elements, are combined with the particle methodology contained in the DEM. The last step in the series of increasing complexity is the realization of a microstructure-based simulation environment which utilizes the interface enhanced DEM methodology. With growing model complexity a wide variety of failure features of cohesive as well as non-cohesive geomaterials can be represented. Finally, the plan of the paper is enriched by the validation of the newly introduced and re-developed discrete models with regard to qualitative and quantitative aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M.P., Tildesley D.J. (1987) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. de Borst R. (1987) Integration of plasticity equations for singular yield functions. Comput Struct 26, 823–829

    Article  MATH  ADS  Google Scholar 

  3. de Borst R., van der Giessen E. (1998) Material instabilities in solids. Wiley, Chichester

    Google Scholar 

  4. Brendel L., Dippel S. (1998). Lasting contacts in molecular dynamics simulations. In: Herrmann H.J., Hovi J.P., Luding S. (eds). Physics of dry granular materials. Kluwer, Dordrecht, pp. 313–318, vol. 35, NATO-ASI series E: applied science.

    Google Scholar 

  5. Carol I., Prat P.C., Lopez C.M. (1997) Normal/shear cracking model: application to discrete crack analysis. J Eng Mech 123, 765–773

    Article  Google Scholar 

  6. Cundall P.A. (2001) A discontinuous future for numerical modelling in geomechanics. Geotech Eng 149, 41–47

    Article  Google Scholar 

  7. Cundall P.A., Strack O.D.L. (1979) A discrete numerical model for granular assemblages. Géotechnique 29, 47–65

    Google Scholar 

  8. D’Addetta G.A. (2004) Discrete models for cohesive frictional materials. Ph.D. thesis, Bericht Nr. 42, Bericht Nr. 42, Institut für Baustatik, Universität Stuttgart, Germany

    Google Scholar 

  9. D’Addetta G.A., Ramm E. (2004). Discrete modelling of geomaterials. In: Vermeer P.A., Ehlers W., Herrmann H.J., Ramm E. (eds). Continuous and discontinuous modelling of cohesive frictional materials – Proceedings of CDM 2004. Balkema, Rotterdam

    Google Scholar 

  10. D’Addetta G.A., Kun F., Herrmann H.J., Ramm E. (2001). From solids to granulates – discrete element simulations of fracture and fragmentation processes in geomaterials. In: Vermeer P.A., Diebels S., Ehlers W., Herrmann H.J., Luding S., Ramm E. (eds). Continuous and discontinuous modelling of cohesive frictional materials. Lecture Notes in Physics, vol. 586, Springer, Berlin Heidelberg New York, pp. 231–258

    Google Scholar 

  11. D’Addetta G.A., Kun F., Ramm E. (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granu Matter 4, 77–90

    Article  MATH  Google Scholar 

  12. D’Addetta, G.A., Ramm, E., Diebels, S., Ehlers, W. Homogenization for particle assemblies. In: Cook, B.K., Jensen, R.P. (eds.) Discrete element methods – numerical modeling of discontinua – Proceedings of 3rd international conference on DEM, Santa Fe, NM, USA, Geotechnical Special Publication No. 117, pp. 259–264, ASCE, Reston, VI, USA (2002)

  13. D’Addetta G.A., Ramm E., Diebels S., Ehlers W. (2004) A particle center based homogenization strategy for particle assemblies. Eng Comput 21, 360–383

    Article  MATH  Google Scholar 

  14. Donzé F.V., Magnier S.A. (1995) Formulation of a 3-D numerical model of brittle behaviour. Geophys J Int 122,790–802

    Article  ADS  Google Scholar 

  15. Ehlers W., Ramm E., Diebels S., D’Addetta G.A. (2003) From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40, 6681–6702

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans R.H., Marathe H.S. (1968) Microcracking and stress–strain curves for concrete in tension. Materiaux et constructions 1, 61–65

    Article  Google Scholar 

  17. Goodman R.E., Taylor R.L., Brekke T.L. (1968) A model for the mechanics of jointed rock. ASCE J Soil Mech Found Div 94, 637–659

    Google Scholar 

  18. Koiter W.T. (1953) Stress–strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart Appl Math 11, 350–354

    MATH  MathSciNet  Google Scholar 

  19. Kuhl E., D’Addetta G.A., Herrmann H.J., Ramm E. (2000) A comparison of discrete granular material models with continuous microplane formulations. Granul Matter 2, 113–121

    Article  Google Scholar 

  20. Kun F., Herrmann H.J. (1996) Fragmentation of colliding discs. Int J Mod Phys C 7, 837–855

    Article  ADS  Google Scholar 

  21. Kun F., Herrmann H.J. (1996) A study of fragmentation processes using a discrete element method. Comp Methods Appl Mech Eng 138, 3–18

    Article  MATH  Google Scholar 

  22. Kun F., D’Addetta G.A., Ramm E., Herrmann H.J. (1999) Two-dimensional dynamic simulation of fracture and fragmentation of solids. Comp Ass Mech Eng 6, 385–402

    MATH  Google Scholar 

  23. Luding S. (1998). Collisions and contacts between two particles. In: Herrmann H.J., Hovi J.P., Luding S. (eds). Physics of dry granular materials, Vol. 350, NATO-ASI series E: applied science Kluwer, Dordrecht, pp. 285–304

    Google Scholar 

  24. Luding, S. Micro–macro transition for anisotropic, frictional granular packings. Int J Solids Struct 41, 5821–5836 (2004)

    Google Scholar 

  25. Magnier S.A., Donzé F.V. (1998) Numerical simulations of impacts using a discrete element method. Mech Coh Frict Mat 3, 257–276

    Article  Google Scholar 

  26. Matuttis H.G., Luding S., Herrmann H.J. (2000) Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol 109, 278–292

    Article  Google Scholar 

  27. van Mier J.G.M. (1997) Fracture processes of concrete. CRC Press, Boca Raton

    Google Scholar 

  28. van Mier J.G.M., Schlangen E., Vervuurt A., van Vliet M.R.A. (1995). Damage analysis of brittle disordered materials: concrete and rock. In: Bakker A. (eds). Mechanical behaviour of materials. Proceedings of the ICM 7. Delft University Press, Delft, pp. 101–126

    Google Scholar 

  29. Mühlhaus H.B. ed. (1995). Continuum models for materials with microstructure. Wiley, Chichester

    MATH  Google Scholar 

  30. Mühlhaus H.B., Sakaguchi H., Wei Y. (1997). Particle based modelling of dynamic fracture in jointed rock. In: Yuan (eds). Procedings of the 9th international conference of the international association of computer methods and advances in geomechanics – IACMAG 97. Balkema, Rotterdam, Wuhan, China, pp. 207–216

    Google Scholar 

  31. Ngo D., Scordelis A.C. (1967) Finite element analysis of reinforced concrete beams. ACI Mat J 64, 152–163

    Google Scholar 

  32. Oda M., Kazama H. (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48, 465–481

    Article  Google Scholar 

  33. Potapov A.V., Hopkins M.A., Campbell C.S. (1995) A two-dimensional dynamic simulation of solid fracture – part II: examples. Int J Mod Phys C 6, 399–425

    Article  ADS  Google Scholar 

  34. Schlangen E., van Mier J.G.M. (1992) Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement Concrete Res 14, 105–118

    Article  Google Scholar 

  35. Stankowski T. (1990) Numerical simulation of progressive failure in particle composites. Ph.D. thesis, University of Colorado, Boulder

    Google Scholar 

  36. Tillemans H.J., Herrmann H.J. (1995) Simulating deformations of granular solids under shear. Physica A 217, 261–288

    Article  ADS  Google Scholar 

  37. Vermeer P.A., Diebels S., Ehlers W., Herrmann H.J., Luding S., Ramm E. ed. (2001). Continuous and discontinuous modelling of cohesive frictional materials. Lecture Notes in Physics 586. Springer, Berlin Heidelberg Newyork

    MATH  Google Scholar 

  38. Vonk R. (1989) Influence of boundary conditions on softening of concrete loaded in compression. Report TUE/BKO 89.14, Faculteit Bouwkunde, Technische Universiteit Eindhoven, The Netherlands

    Google Scholar 

  39. Vonk R. (1992) Softening of concrete loaded in compression. Ph.D. thesis, Technische Universiteit Eindhoven, The Netherlands

    Google Scholar 

  40. Zhong X., Chang C.S. (1999) Micromechanical modeling for behavior of cementitious granular materials. J Eng Mech 125, 1280–1285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Antonio D’Addetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Addetta, G.A., Ramm, E. A Microstructure-based Simulation Environment on the Basis of an Interface Enhanced Particle Model. Granular Matter 8, 159–174 (2006). https://doi.org/10.1007/s10035-006-0004-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-006-0004-4

Keywords

Navigation