Log in

DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this work, at first a new failure criterion for breakage of brittle particle systems is proposed, which combines the classical Mohr–Coulomb strength criterion with the probabilistic Weibull concept. This failure criterion is especially applicable to particle systems under compression load and accounts for the size-dependence of the material’s strength. Second, the Discrete Element Method (DEM) is implemented for sharp edged particles of convex polyhedral shape. The Mohr–Coulomb–Weibull criterion is integrated into the running DEM procedure to simulate progressive particle cracking and comminution of particle systems. The feasibility of the model was tested with simple uniaxial and triaxial compressive loading states, and the influence of relevant material parameters was studied. As a first application example of the method, an oedometric experiment was simulated, whereby coarse quartzite particles are compressed in a piston-die press. The results show good qualitative agreement with the experimentally observed particle size distribution. Thus, the ability of the suggested approach has been proved to reproduce important features as the size effect and the influence of stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  2. Weerasekara, N., Powell, M., Cleary, P., Tavares, L., Evertsson, M., Morrison, R., Quist, J., Carvalho, R.: The contribution of DEM to the science of comminution. Powder Technol. 248, 3–24 (2003). (Discrete element modelling)

    Article  Google Scholar 

  3. Matuttis, H.-G., Chen, J.: Understanding the Discrete Element Method: Simulation of Non-spherical Particles for Granular and Multi-body Systems. Wiley, Hoboken (2014)

    Book  MATH  Google Scholar 

  4. Lu, G., Third, J., Müller, C.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Article  Google Scholar 

  5. Wang, J., Yu, H.S., Langston, P., Fraige, F.: Particle shape effects in discrete element modelling of cohesive angular particles. Granul. Matter 13(1), 1–12 (2011)

    Article  Google Scholar 

  6. Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15(1), 85–93 (2013)

    Article  Google Scholar 

  7. Eliáš, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014)

    Article  Google Scholar 

  8. Nassauer, B., Liedke, T., Kuna, M.: Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles. Comput. Part. Mech. 3(1), 95–106 (2016)

    Article  Google Scholar 

  9. Nassauer, B., Kuna, M.: Impact of micromechanical parameters on wire sawing: a 3D discrete element analysis. Comput. Part. Mech. 2, 63–71 (2015)

    Article  Google Scholar 

  10. Potyondy, D., Cundall, P.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  11. D’Addetta, A.G., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4(2), 77–90 (2002)

    Article  MATH  Google Scholar 

  12. Gutierrez, A., Guichou, J.: Computational simulation of fracture of materials in comminution devices. Miner. Eng. 61, 73–81 (2014)

    Article  Google Scholar 

  13. Laufer, I.: Grain crushing and high-pressure oedometer tests simulated with the discrete element method. Granul. Matter 17(3), 389–412 (2015)

    Article  Google Scholar 

  14. Cleary, P., Sinnott, M.: Simulation of particle flows and breakage in crushers using DEM: Part 1—Compression crushers. Miner. Eng. 74, 178–197 (2015)

    Article  Google Scholar 

  15. Delaney, G., Morrison, R., Sinnott, M., Cummins, S., Cleary, P.: Dem modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Miner. Eng. 74, 112–122 (2015)

    Article  Google Scholar 

  16. Potapov, A., Campbell, C.: A three-dimensional simulation of brittle solid fracture. Int. J. Mod. Phys. C 7(5), 717–729 (1996)

    Article  ADS  Google Scholar 

  17. Ma, G., Zhou, W., Regueiro, R., Wang, Q., Chang, X.: Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technol. 308, 388–397 (2017)

    Article  Google Scholar 

  18. De Bono, J., McDowell, G.: Particle breakage criteria in discrete-element modelling. Geotechnique 66(12), 1014–1027 (2016)

    Article  Google Scholar 

  19. Lobo-Guerrero, S., Vallejo, L.E.: Crushing a weak granular material: experimental numerical analyses. Gotechnique 55(3), 245–249 (2005)

    Article  Google Scholar 

  20. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2/3), 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  21. Šmilauer, V., et al.: Yade Documentation 2nd edn. The Yade Project (2015). http://yade-dem.org/doc/. doi:10.5281/zenodo.34073

  22. Cundall, P.: Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

    Article  Google Scholar 

  23. Eliáš, J.: Yade, polyhedra implementation. https://git.io/v6PD8 (2013)

  24. Kettner, L.: 3D polyhedral surface. In: CGAL User and Reference Manual, 4.8.1 edn. CGAL Editorial Board (2016)

  25. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  26. Labuz, J.F., Zang, A.: Mohr–Coulomb failure criterion. Rock Mech. Rock Eng. 45(6), 975–979 (2012)

    Article  ADS  Google Scholar 

  27. Luding, S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26(1), 33–42 (2008)

    Article  ADS  Google Scholar 

  28. Weibull, W.: A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens handlingar, Generalstabens litografiska anstalts förlag (1939)

  29. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    MATH  Google Scholar 

  30. Rasche, S., Strobl, S., Kuna, M., Bermejo, R., Lube, T.: Determination of strength and fracture toughness of small ceramic discs using the small punch test and the ball-on-three-balls test. In: Procedia Materials Science, 20th European Conference on Fracture, vol. 3, pp. 961–966 (2014)

  31. Tsoungui, O., Vallet, D., Charmet, J.-C., Roux, S.: Size effects in single grain fragmentation. Granul. Matter 2(1), 19–27 (1999)

    Article  Google Scholar 

  32. Šmilauer, V., et al.: Dem formulation. In: Yade Documentation 2nd edn. The Yade Project (2015). http://yade-dem.org/doc/. doi:10.5281/zenodo.34044

  33. Luding, S.: Introduction to discrete element methods. In: Darve, F., Ollivier, J.-P. (eds.) European Journal of Environmental and Civil Engineering, pp. 785–826. Lavoisier, Paris (2008)

    Google Scholar 

  34. Klichowicz, M., Reichert, M., Lieberwirth, H., Muetze, T.: Self-similarity and energy-size relationship of coarse particles comminuted in single particle mode. In: Proceedings of the XXVII International Mineral Processing Congress (2014)

Download references

Acknowledgements

The authors express their sincere appreciations to Prof. H. Lieberwirth and M. Klichowicz (Institute of Mineral Processing Machines) for the provided experimental data. This work was funded by the German Research Foundation, Project DFG KU 929/19-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard Kuna.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkyy, A., Kuna, M. DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion. Granular Matter 19, 41 (2017). https://doi.org/10.1007/s10035-017-0731-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0731-8

Keywords

Navigation