Log in

Effect of calcium hydroxide on the electrochemical performance of a [Ni4Al(OH)10]OH electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Samples of [Ni4Al(OH)10]OH were prepared by co-precipitation with the existence of calcium and subsequent hydrothermal treatment. Inductively coupled plasma (ICP) measurements show that the composition of prepared samples does not change very much with the initial concentration of Ca2+ in the mother solution, which may be related to the high solubility of Ca(OH)2. Powder X-ray diffraction measurements show that the modification does not change the lattice parameters of [Ni4Al(OH)10]OH a lot, but scanning electron microscope images show some morphological differences between the sample without Ca and the sample after the modification of calcium hydroxide. However, those changes in composition and morphology do improve the reversibility and charge efficiency of [Ni4Al(OH)10]OH, especially at a higher temperature of 65 °C. For example, the difference between the oxidation peak and oxygen evolution peak in the cyclic voltammetric diagrams at 65 °C becomes large, a better charge/discharge performance at high current density can be observed. In addition, the charge-transfer resistance (R t) of the electrode according to the electrochemical impedance spectra increases after the modification of calcium and become larger as the temperature is elevated for 20 to 65 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ovshinsky SR, Fetcenko MA, Ross J (1993) Science 260:176

    Article  CAS  Google Scholar 

  2. Linden D (1995) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  3. Fetcenko MA, Ovshinsky SR, Reichman B, Young K, Fierro C, Koch J, Zallen A, Mays W, Ouchi T (2007) J Power Sources 165:544

    Article  CAS  Google Scholar 

  4. Barnard R, Randell CF, Tye FL (1980) J Appl Electrochem 10:127

    Article  CAS  Google Scholar 

  5. Corrigan DA (1989) J Electrochem Soc 136:7

    Google Scholar 

  6. Faure C, Delmas C, Willmann P (1991) J Power Sources 36:497

    Article  CAS  Google Scholar 

  7. Hu WK, Noreus D (2003) Chem Mater 15:974

    Article  CAS  Google Scholar 

  8. Hu M, Lei L (2007) J Solid State Electrochem 11:847

    Article  CAS  Google Scholar 

  9. Lei L, Hu M, Gao X, Sun Y (2008) Electrochimica Acta 54:671

    Article  CAS  Google Scholar 

  10. Hu M, Gao X, Lei L, Sun Y (2009) J Phys Chem C 113:7448

    Article  CAS  Google Scholar 

  11. Guerlou-Demourgues L, Fournes L, Delmas C (1996) J Electrochem Soc 143:3083

    Article  CAS  Google Scholar 

  12. Wu MY, Wang JM, Zhang JQ, Cao CN (2006) J Solid State Electrochem 10:411

    Article  CAS  Google Scholar 

  13. Chen H, Wang JM, Zhao YL, Zhang JQ, Cao CN (2005) J Solid State Electrochem 9:421

    Article  CAS  Google Scholar 

  14. Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N (1994) J Electrochem Soc 141:2956

    Article  CAS  Google Scholar 

  15. Wang CY, Zhong S, Bradhurst DH, Liu HK, Dou SX (2002) J Alloy Compd 330–332:802

    Article  Google Scholar 

  16. Gao X, Lei L, Hu M, Qin L, Sun Y (2009) J Power Sources 191:662

    Article  CAS  Google Scholar 

  17. Shinyama K, Magari Y, Funahashi A, Tanaka K (2003) Electrochemistry 71:686

    CAS  Google Scholar 

  18. Hu WK, Gao XP, Geng MM, Gong ZX, Noreus D (2005) J Phys Chem B 109:5392

    Article  CAS  Google Scholar 

  19. Watanabe K, Koseki M, Kumagai N (1996) J Power Sources 58:23

    Article  CAS  Google Scholar 

  20. Pralong V, Delahaye-Vidal A, Beaudoin B, Leriche JB, Tarascon JM (2000) J Electrochem Soc 147:1306

    Article  CAS  Google Scholar 

  21. Tessier C, Faure C, Guerlou-Demourgues L, Denage C, Nabias G, Delmas C (2002) J Electrochem Soc 149:A1136

    Article  CAS  Google Scholar 

  22. Oshitani M, Watada M, Shodai K, Kodama M (2001) J Electrochem Soc 148:A67

    Article  CAS  Google Scholar 

  23. Nan J, Hou X, Yang M, Han D, Li W (2006) J Electrochem Soc 153:A1159

    Article  CAS  Google Scholar 

  24. Yuan AB, Cheng SO, Zhang JQ, Cao CN (1998) J Power Sources 76:36

    Article  CAS  Google Scholar 

  25. He XM, Ren JG, Li W, Jiang CY, Wan CR (2006) Electrochim Acta 51:4533

    Article  CAS  Google Scholar 

  26. Zhang X, Gong Z, Zhao S, Geng M, Wang Y, Northwood DO (2008) J Power Sources 175:630

    Article  CAS  Google Scholar 

  27. Begum SN, Muralidharan VS, Ahmed Basha C (2009) Int J Hydrogen Energy 34:1548

    Article  CAS  Google Scholar 

  28. Kibria MF, Mridha MS (1996) Int J Hydrogen Energy 21:179

    Article  CAS  Google Scholar 

  29. Unates ME, Folquer ME, Vilche JR, Arvia AJ (1992) J Electrochem Soc 139:2697

    Article  CAS  Google Scholar 

  30. Maeda A, Kimiya H, Moriwaki Y, Matsumoto I, Maita A, Kimiya K (1999) EP923146A1

  31. Liu B, Yuan H, Zhang Y (2004) Int J Hydrogen Energy 29:453

    Article  CAS  Google Scholar 

  32. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Electrochim Acta 50:91

    Article  Google Scholar 

  33. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176:275

    Article  CAS  Google Scholar 

  34. Rammelt U, Reinhard G (1990) Electrochimica Acta 35:1045

    Article  CAS  Google Scholar 

  35. Viswanathan VV, Salkind AJ, Kelley JJ, Ockerman JB (1995) J Appl Electrochem 25:716

    Article  CAS  Google Scholar 

  36. Reid MA, Loyselle PL (1991) J Power Sources 36:285

    Article  CAS  Google Scholar 

  37. Wang XY, Yan J, Yuan HT, Zhang YS, Song DY (1999) Int J Hydrogen Energy 24:973

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, L., Hu, M., Gao, X. et al. Effect of calcium hydroxide on the electrochemical performance of a [Ni4Al(OH)10]OH electrode. J Solid State Electrochem 15, 405–412 (2011). https://doi.org/10.1007/s10008-010-1102-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1102-0

Keywords

Navigation