Log in

Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, NiMo coatings were electrochemically deposited on a copper electrode (Cu/NiMo) and on an electrodeposited nickel onto copper plate (Cu/Ni/NiMo) in citrate solutions. Effects of electrolyte composition, pH value, and temperature on hydrogen-evolution reaction (HER) as well as the electrochemical stability in alkaline solution were investigated, and the electrochemical activation energy was determined for the NiMo alloys. This was evaluated by the determination of kinetic and mechanism of HER in alkali medium by the polarization measurements, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni–Mo were investigated using SEM and EDS analyses. The results showed that the corresponding HER overpotential of the Ni–Mo film depends on alloy composition and surface morphology. As the wt% of Mo content in the alloy is increased, the onset potential of electrode for HER shifted in the positive direction favoring hydrogen generation with lower overpotential. The overall experimental data indicated that the porous Ni–Mo coating on electrodeposited nickel plate was obtained when the molybdenum content was ca. 41 wt%. This electrodes exhibited high catalytic activity in the HER (η 100 = −48 mV at 100 mA cm−2 and 80 °C), and their stability was tested by polarization measurements after different anodic and cathodic treatments in 1 M NaOH solution. Moreover, the corrosion behaviors of Ni and Cu/Ni/NiMo electrodes at open-circuit potential were also investigated, and their corrosion resistances were compared.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Veziroğlu TN, Barbir F (1992) Hydrogen: the wonder fuel. Int J Hydrogen Energy 17:391–404. doi:10.1016/0360-3199(92)90183-W

    Article  Google Scholar 

  2. Veziroğlu TN, Sxahin S (2008) 21st Century’s energy hydrogen energy system. Energy Convers Manag 49(7):1820–1831. doi:10.1016/j.enconman.2007.08.015

    Article  Google Scholar 

  3. Döner A, Taşkesen E, Kardaş G (2014) Hydrogen evolution stability of platinum modified graphite electrode. Int J Hydrogen Energy 39:11355–11359. doi:10.1016/j.ijhydene.2014.05.159

    Article  Google Scholar 

  4. Solmaz R, Kardaş G (2011) Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production. Int J Hydrogen Energy 36:12079–12087. doi:10.1016/j.ijhydene.2011.06.101

    Article  CAS  Google Scholar 

  5. Pletcher D, Li X (2011) Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrogen Energy 36:15098–15104. doi:10.1016/j.ijhydene.2011.08.080

    Article  Google Scholar 

  6. McArthur MA, Jorge L, Coulombe S, Omanovic S (2014) Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J Power Sour 266:365–373. doi:10.1016/j.jpowsour.2014.05.036

    Article  CAS  Google Scholar 

  7. Rami A, Lasia A (1992) Kinetics of hydrogen evolution on Ni-Al alloy electrodes. J Appl Electrochem 22:376–382. doi:10.1007/BF01092692

    Article  CAS  Google Scholar 

  8. Suffredini HB, Cerne JL, Crnkovic FC, Machado SAS, Avaca LA (2000) Recent developments in electrode materials for water electrolysis. Int J Hydrogen Energy 25:415–423. doi:10.1016/S0360-3199(99)00049-X

    Article  CAS  Google Scholar 

  9. Tang X, **ao L, Yang C, Lu J, Zhuang L (2014) Noble fabrication of Ni-Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis. Int J Hydrogen Energy 39:3055–3060. doi:10.1016/j.ijhydene.2013.12.053

    Article  CAS  Google Scholar 

  10. Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38. doi:10.1007/BF01012468

    Article  CAS  Google Scholar 

  11. Pletcher D, Li X, Wang S (2012) A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production. Int J Hydrogen Energy 37:7429–7435. doi:10.1016/j.ijhydene.2012.02.013

    Article  CAS  Google Scholar 

  12. Hu C-C, Weng C-Y (2000) Hydrogen evolving activity on nickel–molybdenum deposits using experimental strategies. J Appl Electrochem 30:499–506. doi:10.1023/A:1003964728030

    Article  CAS  Google Scholar 

  13. Donten M, Cesiulis H, Stojek Z (2005) Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths. Electrochim Acta 50:1405–1412. doi:10.1016/j.electacta.2004.08.028

    Article  CAS  Google Scholar 

  14. Chassaing E, Portail N, Levy AF, Wang G (2004) Characterisation of electrodeposited nanocrystalline Ni–Mo alloys. J Appl Electrochem 34:1085–1091. doi:10.1007/s10800-004-2460-z

    Article  CAS  Google Scholar 

  15. Sanches LS, Domingues SH, Marino CEB, Mascaro LH (2004) Characterisation of electrochemically deposited Ni–Mo alloy coatings. Electrochem Commun 6:543–548. doi:10.1016/j.elecom.2004.04.002

    Article  CAS  Google Scholar 

  16. Crousier J, Eyraud M, Crousier JP, Roman JM (1992) Influence of substrate on the electrodeposition of nickel-molybdenum alloys. J Appl Electrochem 22:749–755. doi:10.1007/BF01027505

    Article  CAS  Google Scholar 

  17. Sanches LS, Marino CB, Mascaro LH (2007) Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions. J Alloy Compd 439:342–345. doi:10.1016/j.jallcom.2006.08.231

    Article  CAS  Google Scholar 

  18. Marlot A, Kern P, Landolt D (2002) Pulse plating of Ni–Mo alloys from Ni–rich electrolytes. Electrochim Acta 48:29–36. doi:10.1016/S0013-4686(02)00544-3

    Article  CAS  Google Scholar 

  19. Jović BM, Jović VD, Maksimović VM, Pavlović MG (2008) Characterization of electrodeposited powders of the system Ni–Mo–O. Electrochim Acta 53:4796–4804. doi:10.1016/j.electacta.2008.02.004

    Article  Google Scholar 

  20. Han Q, Cui S, Pu N, Chen J, Liu K, Wei X (2010) A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium. Int J Hydrogen Energy 35:5194–5201. doi:10.1016/j.ijhydene.2010.03.093

    Article  CAS  Google Scholar 

  21. Krstajic NV, Jovic VD, Lj Gajic-Krstaji, Jovic BM, Antozzi AL, Martelli GN (2008) Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int J Hydrogen Energy 33:3676–3687. doi:10.1016/j.ijhydene.2008.04.039

    Article  CAS  Google Scholar 

  22. Aaboub O (2011) Hydrogen evolution activity of Ni–Mo coating electrodeposited under magnetic field control. Int J Hydrogen Energy 36:4702–4709. doi:10.1016/j.ijhydene.2011.01.035

    Article  Google Scholar 

  23. Krstajić NV, Lj Gajić-Krstajić, Lačnjevac U, Jović BM, Mora S, Jović VD (2011) Non-noble metal composite cathodes for hydrogen evolution. Part I: the Ni–MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles. Int J Hydrogen Energy 36:6441–6449. doi:10.1016/j.ijhydene.2011.02.105

    Article  Google Scholar 

  24. Krstajić NV, Lačnjevac U, Jović BM, Mora S, Jović VD (2011) Non-noble metal composite cathodes for hydrogen evolution. Part II: the Ni–MoO2 coatings electrodeposited from nickel chloride-ammonium chloride bath containing MoO2 powder particles. Int J Hydrogen Energy 36:6450–6461. doi:10.1016/j.ijhydene.2011.02.106

    Article  Google Scholar 

  25. **a M, Lei T, Lv N, Li N (2014) Synthesis and electrocatalytic hydrogen evolution performance of Ni–Mo–Cu alloy coating electrode. Int J Hydrogen Energy 39:4797–4802. doi:10.1016/j.ijhydene.2014.01.091

    Google Scholar 

  26. Gennero de Chialvo MR, Chialvo AC (1998) Hydrogen evolution reaction on smooth Ni(1−x) + Mo(x) alloys (0 ≤ x ≤ 0.25). J Electroanal Chem 448:87–93. doi:10.1016/S0022-0728(98)00011-4

    Article  CAS  Google Scholar 

  27. Beltowska-Lehman E, Indyka P (2012) Kinetics of Ni–Mo electrodeposition from Ni-rich citrate baths. Thin Solid Films 520:2046–2051. doi:10.1016/j.tsf.2011.10.024

    Article  CAS  Google Scholar 

  28. Jaksic JM, Vojnovic MV, Krstajic NV (2000) Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim Acta 45:4151–4158. doi:10.1016/S0013-4686(00)00549-1

    Article  CAS  Google Scholar 

  29. Kaninski MPM, Miulovic SM, Tasic GS, Maksic AD, Nikolic VM (2011) A study on the Co–W activated Ni electrodes for the hydrogen production from alkaline water electrolysis—energy saving. Int J Hydrogen Energy 36:5227–5235. doi:10.1016/j.ijhydene.2011.02.046

    Article  Google Scholar 

  30. Herraiz-Cardona I, Ortega E, Garcίa Antόn J, Pérez-Herranz V (2011) Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction onNi-based electrodeposits. Int J Hydrogen Energy 36:9428–9438. doi:10.1016/j.ijhydene.2011.05.047

    Article  CAS  Google Scholar 

  31. Los P, Rami A, Lasia A (1993) Hydrogen evolution reaction on Ni-Al electrodes. J Appl Electrochem 23:135–140

    Article  CAS  Google Scholar 

  32. Highfield JG, Claude E, Oguro K (1999) Electrocatalytic synergism in Ni–Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim Acta 44:2805–2814. doi:10.1016/S0013-4686(98)00403-4

    Article  CAS  Google Scholar 

  33. Damian A, Omanovic S (2006) Ni and Ni–Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J Power Sources 158:464–476. doi:10.1016/j.jpowsour.2005.09.007

    Article  CAS  Google Scholar 

  34. Navvaro-Flores E, Chong Z, Omanovic S (2005) Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A 226:179–197. doi:10.1016/j.molcata.2004.10.029

    Article  Google Scholar 

  35. Jaksic MM (2000) Hypo–hyper–d–electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochim Acta 45:4085–4099. doi:10.1016/S0360-3199(00)00120-8

    Article  CAS  Google Scholar 

  36. Eliaz N, Gileadi E (2007) The mechanism of induced codeposition of Ni–W alloys. Electrochem Society 6:337–349

    Google Scholar 

  37. Metzler OY, Zhu L, Gileadi E (2003) The anomalous codeposition of tungsten in the presence of nickel. Electrochim Acta 48:2551–2562. doi:10.1016/S0013-4686(03)00297-4

    Article  Google Scholar 

  38. Eliaz N, Sridhara TM, Gileadi E (2005) Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim Acta 50:2893–2904. doi:10.1016/j.electacta.2004.11.038

    Article  CAS  Google Scholar 

  39. Solmaz R, Kardaş G (2007) Hydrogen evolution and corrosion performance of NiZn coatings. Energy Convers Manag 48:583–591. doi:10.1016/j.enconman.2006.06.004

    Article  CAS  Google Scholar 

  40. Conway BE, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the volcano curve for cathodic H2 evolution kinetics. Electrochim Acta 45:4075–4083. doi:10.1016/S0013-4686(00)00523-5

    Article  CAS  Google Scholar 

  41. Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D (2001) On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution Part I. The mechanism. J Electroanal Chem 512:16–26. doi:10.1016/S0022-0728(01)00590-3

    Article  Google Scholar 

  42. Hu W (2000) Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 25:111–118. doi:10.1016/S0360-3199(99)00024-5

    Article  CAS  Google Scholar 

  43. Metikos-Hukovic M, Jukic A (2000) Correlation of electronic structure and catalytic activity of Zr–Ni amorphous alloys for the hydrogen evolution reaction. Electrochim Acta 45:4159–4170. doi:10.1016/S0013-4686(00)00550-8

    Article  CAS  Google Scholar 

  44. Elumalai P, Vasan HN, Munichandraiah N, Shivashankar SA (2002) Kinetics of hydrogen evolution on submicron size Co, Ni, Pd and Co–Ni alloy powder electrodes by d.c. polarization and a.c. impedance studies. J Appl Electrochem 32:1005–1010. doi:10.1023/A:1020935218149

    Article  CAS  Google Scholar 

  45. Łosiewicz B, Budniok A, Rόwiński E, Łagiewka E, Lasia A (2004) The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modifed nickel electrodes. Int J Hydrogen Energy 29:145–157. doi:10.1016/S0360-3199(03)00096-X

    Article  Google Scholar 

  46. Hitz C, Lasia A (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes. J Electroanal Chem 500:213–222. doi:10.1016/S0022-0728(00)00317-X

    Article  CAS  Google Scholar 

  47. Döner A, Solmaz R, Kardaş G (2011) Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution. Int J Hydrogen Energy 36:7391–7397. doi:10.1016/j.ijhydene.2011.03.083

    Article  Google Scholar 

  48. Solmaz R, Kardaş G (2009) Electrochemical deposition and characterization of NiFe coatings aselectrocatalytic materials for alkaline water electrolysis. Electrochim Acta 54:3726–3734. doi:10.1016/j.electacta.2009.01.064

    Article  CAS  Google Scholar 

  49. Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes. J Appl Electrochem 34:735–749

    Article  CAS  Google Scholar 

  50. Kubisztal J, Budniok A, Lasia A (2007) Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. Int J Hydrogen Energy 32:1211–1218. doi:10.1016/j.ijhydene.2006.11.020

    Article  CAS  Google Scholar 

  51. Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911. doi:10.1016/j.elecom.2008.10.011

    Article  CAS  Google Scholar 

  52. Kawashima A, Sakaki T, Habazaki H, Hashimoto K (1999) Ni–Mo–O alloy cathodes for hydrogen evolution in hot concentrated NaOH solution. Mater Sci Eng, A 267:246–253. doi:10.1016/S0921-5093(99)00099-4

    Article  Google Scholar 

  53. Niedbala J, Budniok A, Lagiewka E (2008) Hydrogen evolution on the polyethylene-modified Ni–Mo composite layers. Thin Sol Films 516:6191–6196. doi:10.1016/j.tsf.2007.11.105

    Article  CAS  Google Scholar 

  54. Özkan S, Hapçı G, Orhan G, Kazmanlı K (2013) Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties. Surf Coat Technol 232:734–741. doi:10.1016/j.surfcoat.2013.06.089

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Scientific Research Projects Coordination Unit of Istanbul University (Project Number 22847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Orhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manazoğlu, M., Hapçı, G. & Orhan, G. Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium. J Appl Electrochem 46, 191–204 (2016). https://doi.org/10.1007/s10800-015-0908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0908-y

Keywords

Navigation