Log in

Life in extreme environments: microbial diversity in Great Salt Lake, Utah

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Great Salt Lake (GSL) represents one of the world’s most hypersaline environments. In this study, the archaeal and bacterial communities at the North and South arms of the lake were surveyed by cloning and sequencing the 16S rRNA gene. The sampling locations were chosen for high salt concentration and the presence of unique environmental gradients, such as petroleum seeps and high sulfur content. Molecular techniques have not been systematically applied to this extreme environment, and thus the composition and the genetic diversity of microbial communities at GSL remain mostly unknown. This study led to the identification of 58 archaeal and 42 bacterial operational taxonomic units. Our phylogenetic and statistical analyses displayed a high biodiversity of the microbial communities in this environment. In this survey, we also showed that the majority of the 16S rRNA gene sequences within the clone library were distantly related to previously described environmental halophilic archaeal and bacterial taxa and represent novel phylotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon, The Hague

  • Baxter BK, Litchfield CD, Sowers K, Griffith JD, DasSarma PA, DasSarma S (2005) Great Salt Lake microbial diversity. In: Gunde-Cimerron N, Oren A, Plemenita A (eds) Adaptation to life in high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, The Netherlands

    Google Scholar 

  • Bell T, Ager D, Song JI, Newman JA, Thompson IP, Lilley AK, van der Gast CJ (2005) Larger islands house more bacterial taxa. Science 308:1884

    Article  PubMed  CAS  Google Scholar 

  • Boujelben I, Gomariz M, Martínez-García M, Santos F, Peña A, López C, Antón J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie Van Leeuwenhoek 101:845–857

    Article  CAS  Google Scholar 

  • Boutaiba S, Hacene H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J Arid Environ 75:909–916

    Article  PubMed Central  PubMed  Google Scholar 

  • Brakstad OG, Lødeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    Article  PubMed  CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cannon JS, Cannon MA (2002) The southern Pacific Railroad trestle: past and present. In: Gwynn JW (ed) Great Salt Lake, an overview of change. Special Publication of the Utah Department of Natural Resources, Salt Lake City pp 283–294

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Clementino MM, Vieira RP, Cardoso AM, Nascimento AP, Silveira CB, Riva TC, Gonzalez AS, Paranhos R, Albano RM, Ventosa A, Martins OB (2008) Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles 12:595–604

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crandall KA, Fetzner JW, Lawler SH, Kinnersley M, Austin CM (1999) Phylogenetic relationships among the Australian and New Zealand genera of freshwater crayfishes (Decapoda: Parastacidae). Austral J Zool 47:199–214

    Article  Google Scholar 

  • Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PW, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Garcin J, McKew B, Golyshin PN, Lampadariou N, Polymenakou P, Calore D, Cenedese S, Zanon F, Hoog S (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203–207

    Article  PubMed  CAS  Google Scholar 

  • de Souza MP, Amini A, Dojka MA, Pickering IJ, Dawson SC, Pace NR, Terry N (2001) Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Appl Environ Microbiol 67:3785–3794

    Article  PubMed Central  PubMed  Google Scholar 

  • de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758

    Article  PubMed  Google Scholar 

  • Eardley AJ (1963) Oil seeps at Rozel Point. Utah Geol Mineral Survey Spec Stud 5:32

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Gwynn JW (1980) Great Salt Lake: a scientific, historical and economic overview. Utah Geol Mineral Surv Bull 116:83–96

    Google Scholar 

  • Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60

    Article  PubMed  CAS  Google Scholar 

  • Hassibe WR, Keck WG (1978) The Great Salt Lake. US Geological Survey, Reston

    Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  PubMed  CAS  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJ (2004) A taxa-area relationship for bacteria. Nature 432:750–753

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  PubMed  CAS  Google Scholar 

  • Konno U, Kouduka M, Komatsu DD, Ishii K, Fukuda A, Tsunogai U, Ito K, Suzuki Y (2013) Novel microbial populations in deep granitic groundwater from Grimsel Test Site, Switzerland. Microbiol Ecol 65:626–637

    Article  CAS  Google Scholar 

  • Lay CY, Mykytczuk NC, Niederberger TD, Martineau C, Greer CW, Whyte LG (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191

    Article  PubMed  CAS  Google Scholar 

  • Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55

    Article  PubMed  CAS  Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S (2013) Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7:937–948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maddison DR, Maddison WP (2005) MacClade 4: analysis of phylogeny and character evolution. Version 4.08a. Sinauer Associates, Sunderland

  • Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microbiol Ecol 54:598–617

    Article  CAS  Google Scholar 

  • Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66:268–280

    Article  PubMed  CAS  Google Scholar 

  • Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW (2011) Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 6:e22109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Malley MA (2007) The nineteenth century roots of ‘everything is everywhere’. Nature Rev Microbiol 5:647–651

    Article  CAS  Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303

    Article  PubMed  CAS  Google Scholar 

  • Parnell JJ, Crowl TA, Weimer BC, Pfrender ME (2009) Biodiversity in microbial communities: system scale patterns and mechanisms. Mol Ecol 18:1455–1462

    Article  PubMed  Google Scholar 

  • Parnell JJ, Rompato G, Crowl TA, Weimer BC, Pfrender ME (2011) Phylogenetic distance in Great Salt Lake microbial communities. Aquat Microbiol Ecol 64:267–273

    Article  Google Scholar 

  • Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE (2013) Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 8:e61692

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microbiol Ecol 3:143–165

    Article  CAS  Google Scholar 

  • Post FJ (1981) Microbiology of the Great Salt Lake North arm. Hydrobiologia 81:59–69

    Article  Google Scholar 

  • Raghavan TM, Furtado I (2000) Tolerance of an estuarine halophilic archaebacterium to crude oil and constituent hydrocarbons. Bull Environ Contam Toxicol 65:725–731

    Article  PubMed  CAS  Google Scholar 

  • Rengefors K, Logares R, Laybourn-Parry J (2012) Polar lakes may act as ecological islands to aquatic protists. Mol Ecol 21:3200–3209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sinninghe Damsté JS, de Leeuw JW, Kock-van Dalen AC, de Zeeuw MA, de Lange F, Rijpstra WIC, Schenck PA (1987) The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: I. A study of Rozel Point Oil (USA). Geochim Cosmochim Acta 51:2369–2391

    Article  Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  PubMed  CAS  Google Scholar 

  • Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, Wendeberg A (2012) Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol 35:526–532

    Article  PubMed  CAS  Google Scholar 

  • Tsai CR, Garcia JL, Patel BK, Cayol JL, Baresi L, Mah RA (1995) Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int J Syst Bacteriol 45:301–307

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  Google Scholar 

  • Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Article  PubMed  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Weimer BC, Rompato G, Parnell JJ, Gann R, Ganesan B, Navas C, Gonzalez M, Clavel M, Albee-Scott S (2009) Microbial biodiversity of Great Salt Lake, Utah. In: Oren A, Naftz DL, Palacios P, Wurtsbaugh SJ (eds) Saline lakes around the world: unique systems with unique values (Natural Resources and Environmental Issues, vol. 15). S.J. and Jessie E. Quinney Natural Resources Research Library, Logan, pp 15–22

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Sunny S. Drysdale and Scott B. Dahlquist for their technical assistance in collecting samples and sequence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna Tazi.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tazi, L., Breakwell, D.P., Harker, A.R. et al. Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles 18, 525–535 (2014). https://doi.org/10.1007/s00792-014-0637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0637-x

Keywords

Navigation