Log in

Syncytia in plants: cell fusion in endosperm—placental syncytium formation in Utricularia (Lentibulariaceae)

  • New Ideas in Cell Biology
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the develo** embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anger EM, Weber M (2006) Pollen-wall formation in Arum alpinum. Ann Bot (Lond) 97:239–244

    Article  Google Scholar 

  • Arekal GD, Nagendran CR (1975a) Is there a Podostemum type of embryo sac in the genus Farmeria? Caryologia 28:229–235

    Google Scholar 

  • Arekal GD, Nagendran CR (1975b) Embryo sac of Hydrobryopsis sessilis (Podostemaceae)—origin, organization and significance. Bot Not 128:332–337

    Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell Theory revised. Ann Bot (Lond) 94:9–32

    Article  Google Scholar 

  • Battaglia E (1987) Embryological questions: 11. Has the debated case of Podostemaceae been resolved? Ann Bot (Roma) 45:37–64

    Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H (2004) Comparative anatomy of the chalazal endosperm cyst in seeds of the Brassicaceae. Bot J Linn Soc 144:375–394

    Article  Google Scholar 

  • Esau K (1965) Plant Anatomy. Wiley, London

    Google Scholar 

  • Farooq M (1964) Studies in the Lentibulariaceae I. The embryology of Utricularia stellaris L. var. inflexa Clarke. Part II. Microsporangium, male gametophyte, fertilization, endosperm, embryo, and seed. Proc Natl Inst Sci India 30:280–299

    Google Scholar 

  • Gabara B (2001) Jądro. In: Woźny A, Michejda J, Ratajczak L (eds) Podstawy biologii komórki roślinnej. Uniwersytet im Adama Mickiewicza w Poznaniu, Poznań, pp 158–226

    Google Scholar 

  • Ghogue J-P, Ameka GK, Grob V, Huber KA, Pfeifer E, Rutishauser R (2009) Enigmatic morphology of D**ga felicis (Podostemaceae–Podostemoideae), a badly known endemic from northwestern Cameroon. Bot J Linn Soc 160:64–81

    Article  Google Scholar 

  • Golinowski W, Magnusson C (1991) Tissue response induced by Heterodera schachtii (Nematoda) in susceptible and resistant white mustard cultivars. Can J Bot 69:53–62

    Google Scholar 

  • Golinowski W, Grundler FMW, Sobczak M (1996) Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194:103–116

    Article  Google Scholar 

  • Goverse A, Overmars H, Engelbertink J, Schots A, Bakier J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. MPMI 13:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Grundler MW, Sobczak M, Golinowski W (1998) Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur J Plant Pathol 104:545–551

    Article  Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure, and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • Gunning BES, Pate JS (1974) Transfer cells. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 441–480

    Google Scholar 

  • Holtmann B, Kleine M, Grundler FMW (2000) Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211:39–50

    Article  Google Scholar 

  • Jäger-Zürn I (1997) Embryological and floral studies in Weddellina squamulosa Tul. (Podostemaceae, Tristichoideae). Aquat Bot 57:151–182

    Article  Google Scholar 

  • Jankun A, Płachno B (2000) Embryology of Utricularia vulgaris L. Acta Biol Cracov Bot 42/1: 23. Abstracts of the XXIV Conference on Embryology Plants, Animals, Humans May 24–26, 2000, Podlesice, Poland

  • Jobson RW, Albert VA (2002) Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18:127–136

    Google Scholar 

  • Jobson RW, Playford J, Cameron KM, Albert VA (2003) Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL-F DNA sequences: implications for character evolution and biogeography. Syst Bot 28:157–171

    Google Scholar 

  • Kausik SD (1938) Pollen development and seed formation in Utricularia caerulea. Beih Bot Zbl 58A:365–378

    Google Scholar 

  • Kausik SB, Raju MVS (1955) A contribution to the floral morphology and embryology of Utricularia retriculata. Proc Indian Acad Sci 41:155–166

    Google Scholar 

  • Khan R (1954) A contribution to the embryology of Utricularia flexuosa Vahl. Phytomorphol 4:80–117

    Google Scholar 

  • Kirchoff BK, Pfeifer E, Rutishauser R (2008) Plant structure ontology: how should we label plant structures with doubtful or mixed identities? Zootaxa 1950:103–122

    Google Scholar 

  • Magnusson C, Golinowski W (1991) Ultrastructural relationships of the develo** syncytium induced by Heterodera schachtii (Nematoda) in root tissues of rape. Can J Bot 69:44–52

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. New York, McGraw-Hill

    Google Scholar 

  • Merz M (1897) Untersuchungen über die Samenentwicklung der Utricularien. Flora 84:69–87

    Google Scholar 

  • Mepham R, Lane G (1969) Formation and development of the tapetal periplasmodium in Tradescantia bracteata. Protoplasma 68:175–192

    Article  Google Scholar 

  • Mukkada AJ (1962) Some observations on the embryology of Dicraeea stylosa Wight. In: Plant embryology—a symposium. CSIR, New Delhi, pp 139–145

    Google Scholar 

  • Müller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2004) Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol 6:477–490

    Article  PubMed  Google Scholar 

  • Müller K, Borsch T (2005) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Syst Evol 250:39–67. doi:10.1007/s00606-004-0224-1

    Article  Google Scholar 

  • Müller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2006) Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol 6:477–490. doi:10.1055/s-2004-817909

    Article  Google Scholar 

  • Murguía-Sánchez G, Alejandro Novelo R, Thomas Philbrick C, Márquez Guzmán GJ (2002) Embryo sac development in Vanroyenella plumosa, Podostemaceae. Aquat Bot 73:201–210

    Article  Google Scholar 

  • Nagendran CR, Arekal GD, Subramanyan K (1977) Embryo sac studies in three species of Polypleurum (Podostemaceae). Plant Syst Evol 128:215–226

    Article  Google Scholar 

  • Nagl W (1992) The polytenic endosperm haustorium of Rhinanthus minor (Scrophulariaceae) functional ultrastructure. Can J Bot 70:1997–2004

    Article  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in Coronopus didymus L. (Brassicaceae). Protoplasma 219:210–220

    Article  PubMed  CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  PubMed  CAS  Google Scholar 

  • Pacini E, Juniper BE (1983) The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117:116–129

    Article  Google Scholar 

  • Pastey MK, Gower TL, Spearman PW, Crowe JE Jr, Graham BS (2000) A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med 6:35–40

    Article  PubMed  CAS  Google Scholar 

  • Płachno BJ, Świątek P (2008) Cytoarchitecture of Utricularia nutritive tissue. Protoplasma 234:25–32

    Article  PubMed  Google Scholar 

  • Płachno BJ, Świątek P (2010) Unusual embryo structure in viviparous Utricularia nelumbifolia, with remarks on embryo evolution in genus Utricularia. Protoplasma 239:69–80

    Article  PubMed  Google Scholar 

  • Rutishauser R, Novelo RA, Philbrick CT (1999) Developmental morphology of New World Podostemaceae: Marathrum and Vanroyenella. Int J Plant Sci 160:29–45

    Article  Google Scholar 

  • Rutishauser R, Moline P (2005) Evo-devo and the search for homology (“sameness”) in biological systems. Theory Biosci 124:213–241

    PubMed  Google Scholar 

  • Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218:30–51

    Article  PubMed  CAS  Google Scholar 

  • Sobczak M, Golinowski W (2009) Structure of cyst nematode feeding sites. In: Berg RH, Taylor CG (ed) Cell Biology of Plant Nematode Parasitism. Plant Cell Monographs 15

  • Sobczak M, Grymaszewska G, Kurek W, Golinowski W (1995) Biotechnologiczne metody wprowadzania odporności u roślin na nicienie. Kosmos 44:719–735

    CAS  Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1997) Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. Eur J Plant Pathol 103:113–124

    Article  Google Scholar 

  • Swamy BGL, Ganapathy PM (1957) A new type of endosperm haustorium in Nothapodytes foetida. Phytomorphol 7:331–336

    Google Scholar 

  • Taylor P (1989) The genus Utricularia—a taxonomic monograph. Kew B 14:1–735

    Google Scholar 

  • Tiwari SC, Gunning BES (1986) Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum of Tradescantia virginiana L. Protoplasma 133:115–128

    Article  CAS  Google Scholar 

  • Vijayaraghavan MR, Prabhakar K (1984) The Endosperm. In: Johri BM (ed) Embryology of Angiosperms. Springer-Verlag, Berlin, pp 319–376

    Google Scholar 

  • Weng J, Krementsov DN, Khurana S, Roy NH, Thali M (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83:7467–7474

    Article  PubMed  CAS  Google Scholar 

  • Wylie R, Yocom AE (1923) The endosperm of Utricularia. U Iowa Stud Nat History 10(3–18):32

    Google Scholar 

Download references

Acknowledgments

This study was funded by grant N N304 002536 from the Polish Ministry of Science and Higher Education. The first author gratefully acknowledges the support of an award from the Foundation for Polish Sciences (Start Programme). We thank our colleague Dr. Lubomir Adamec for kindly providing part of the material for this study and for hosting BJP in Třeboň. We particularly thank the reviewers for their very helpful suggestions for making our manuscript clearer.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz J. Płachno.

Additional information

Handling Editor: Marisa Otegui

Rights and permissions

Reprints and permissions

About this article

Cite this article

Płachno, B.J., Świątek, P. Syncytia in plants: cell fusion in endosperm—placental syncytium formation in Utricularia (Lentibulariaceae). Protoplasma 248, 425–435 (2011). https://doi.org/10.1007/s00709-010-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0173-1

Keywords

Navigation