Log in

Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a selective hydrazine sensor that is based on the use of a film of TiO2 nanoparticles faceted predominantly at the 101 and 001 sides. The hydrazine (Hyd) sensor was fabricated by depositing the nanoparticles in 5% concentration in a nafion matrix on a glassy carbon electrode (GCE). The sensor exhibits a fast response, excellent sensitivity and good selectivity over 1.0 nM to 10.0 mM. The sensor responds linearly to the logarithm of the concentration of dissolved hydrazine in the range from 1.0 nM to 10.0 mM, with a sensitivity of 35.04 μA.mM−1.cm−2. The detection limit is 28.8 ± 0.2 pM (at an S/N ratio of 3) is extremely low. In our perception, this approach emerges as an effective technique for develo** efficient chemical sensors for environmental pollutants.

Schematic presentation of a hydrazine sensor based on TiO2 nanoparticles placed on a glassy carbon electrode with 5% Nafion for the selective and efficient detection of hydrazine in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Casella IG, Guascito MR, Salvi AM, Desimoni E (1997) Catalytic oxidation and flow detection of hydrazine compounds at a nafion/ruthenium(III) chemically modified electrode. Anal Chim Acta 354:333

    Article  CAS  Google Scholar 

  2. Gholivand MB, Azadbakht A (2011) A novel hydrazine electrochemical sensor based on a zirconium hexacyanoferrate film-bimetallic au-Pt inorganic-organic hybrid nanocomposite onto galssy carbon-modified electrode. Electrochim Acta 56:10044

    Article  CAS  Google Scholar 

  3. Salimi A, Miranzadeh L, Hallaj R (2008) Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta 75:147

    CAS  Google Scholar 

  4. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination. Electrochim Acta 125:593

    Article  CAS  Google Scholar 

  5. Ballesteros JC, Chaînet E, Ozil P, Trejo G, Meas Y (2011) Electrochemical studies of Zn underpotential/overpotential deposition on a nickel electrode from non-cyanide alkaline solution containing glycine. Electrochim Acta 56:5443

    Article  CAS  Google Scholar 

  6. Safavi A, Baezzat MR (1998) Flow injection chemiluminescence determination of hydrazine. Anal Chim Acta 358:121

    Article  CAS  Google Scholar 

  7. Gawargious YA, Besada A (1975) Iodometricmicrodetermination of hydrazines by amplification reactions. Talanta 22:757

    Article  CAS  Google Scholar 

  8. McBride W, Henry R, Skolnik S (1951) Potentiometric analytical methods for hydrazino compounds. Sydrazine Sulfate Anal Chem 23:890

    Article  CAS  Google Scholar 

  9. Ikeda S, Satake H, Kohri Y (1984) Flow injection analysis with amperometric detector utilizing the redox reaction of iodate ion. Chem Lett 13:873

    Article  Google Scholar 

  10. Safavi A, Ensafi AA (1995) Kinetic spectrophotometric determination of hydrazine. Anal Chim Acta 300:307

    Article  CAS  Google Scholar 

  11. Golabi SM, Zare HR, Hamzehloo M (2001) Electrocatalytic oxidation of hydrazine at a pyrocatechol violet (PCV) chemically modified electrode. Microchem J 69:13

    Article  Google Scholar 

  12. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151

    Article  CAS  Google Scholar 

  13. Azad UP, Ganesan V (2011) Determination of hydrazine by polyNi(II) complex modified electrodes with a wide linear calibration range. Electrochim Acta 56:5766

    Article  CAS  Google Scholar 

  14. Ivanov S, Lange U, Tsakova V, Mirsky VM (2010) Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: oxidation of hydrazine. Sensors Actuators B Chem 150:271

    Article  CAS  Google Scholar 

  15. Jayasri D, Narayanan SS (2007) Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode. J Hazardous Mater 144:348

    Article  CAS  Google Scholar 

  16. Li J, Lin X (2007) Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode. Sensors Actuators B Chem 126:527

    Article  CAS  Google Scholar 

  17. Li F, Zhang B, Dong S, Wang E (1997) A novel method of electrodepositing highly dispersed nano palladium particles on glassy carbon electrode. Electrochim Acta 42:2563

    Article  CAS  Google Scholar 

  18. Haghighi B, Hamidi H, Bozorgzadeh S (2010) Sensitive and selective determination of hydrazine using glassy carbon electrode modified with Pd nanoparticles decorated multiwalled carbon nanotubes. Anal Bioanal Chem 398:1411

    Article  CAS  Google Scholar 

  19. Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131:106

    Article  CAS  Google Scholar 

  20. Šljukić B, Banks CE, Crossley A, Compton RG (2006) Iron (III) oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide. Electroanalysis 18:1757

    Article  Google Scholar 

  21. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919

    Article  CAS  Google Scholar 

  22. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735

    Article  CAS  Google Scholar 

  23. O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    Article  Google Scholar 

  24. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396

    Article  CAS  Google Scholar 

  25. Diebold U (2003) The surface science of titanium dioxide. Sur Sci Rep 48:53

    Article  CAS  Google Scholar 

  26. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559

    Article  CAS  Google Scholar 

  27. Wu B, Guo C, Zheng N, **e Z, Stucky GD (2008) Nonaqueous production of nanostructured Anatase with high-energy facets. J Am Chem Soc 130:17563

    Article  CAS  Google Scholar 

  28. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Structure and energetics of water adsorbed at TiO2Anatase101 and 001 surfaces. Phys Rev Lett 81:2954

    Article  CAS  Google Scholar 

  29. Ponnusamy D, Prasad AK, Madanagurusamy S (2016) CdO-TiO2 nanocomposite thin films for resistive hydrogen sensing. Microchim Acta 183:311

    Article  CAS  Google Scholar 

  30. Tian J, Yang G, Jiang D, Su F, Zhang Z (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183:2871

    Article  CAS  Google Scholar 

  31. **ong W, Liu H, Liu S (2015) Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2. Microchim Acta 182:2345

    Article  CAS  Google Scholar 

  32. Ongaro M, Signoretto M, Trevisan V, Stortini AM, Ugo P (2015) Arrays of TiO2 nanowires as photoelectrochemical sensor for hydrazine detection. Chem Aust 3:146

    CAS  Google Scholar 

  33. Kim SP, Choi HC (2015) Reusable hydrazine amperometric sensor based on nafion-coated TiO2-carbon nanotube modified electrode. Sensors Actuators B Chem 207:424

    Article  CAS  Google Scholar 

  34. Hu CG, Wang WL, Wang SX, Zhu W, Li Y (2003) Investigation on electrochemical properties of carbon nanotubes. Diamond Related Mater 12:1295

    Article  CAS  Google Scholar 

  35. Dong B, He B-L, Huang J, Gao G-Y, Yang Z, Li H-L (2008) High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. J Power Sources 175:266

    Article  CAS  Google Scholar 

  36. Pavela TO (1975) Hydrazine-platinum, a low-pressure hydrogen electrode. Suomen Kemistilehti 30B: 240.

  37. Chen X, Wang Z, Wang X, Wan J, Liu J, Qian Y (2005) Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg Chem 44:951

    Article  CAS  Google Scholar 

  38. Zhang M, Chen B, Tang H, Tang G, Li C, Chen L, Zhang H, Zhang Q (2015) Hydrothermal synthesis and tribological properties of FeS2 (pyrite)/reduced graphene oxide heterojunction. RSC Adv 5:1417

    Article  CAS  Google Scholar 

  39. Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of Nanoporous semiconductors. Capacitive and reactive properties of Nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107:758

    Article  CAS  Google Scholar 

  40. Wu J, Zhou T, Wang Q, Umar A (2016) Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection. Sensors Actuators B Chem 224:878

    Article  CAS  Google Scholar 

  41. Zhao Y-D, Zhang W-D, Chen H, Luo Q-M (2002) Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 58:529

    Article  CAS  Google Scholar 

  42. Kumar R, Rana D, Umar A, Sharma P, Chauhan S, Chauhan MS (2015) Ag-doped ZnOnanoellipsoids: potential scaffold for photocatalytic and sensing applications. Talanta 137:204

    Article  CAS  Google Scholar 

  43. Ni Y, Zhu J, Zhang L, Hong J (2010) Hierarchical ZnO micro/nanoarchitectures: hydrothermal preparation, characterization and application in the detection of hydrazine. CrystEngComm 12:2213

    Article  CAS  Google Scholar 

  44. Liu J, Li Y, Jiang J, Huang X (2010) C@ZnOnanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Trans 39:8693

    Article  CAS  Google Scholar 

  45. Sultana W, Ghosh S, Eraiah B (2012) Zinc oxide modified au electrode as sensor for an efficient detection of hydrazine. Electroanalysis 24:1869

    Article  CAS  Google Scholar 

  46. Han KN, Li CA, Bui MPN, Pham X-H, Seong GH (2011) Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine. Chem Commun 47:938

    Article  CAS  Google Scholar 

  47. Fang B, Zhang C, Zhang W, Wang G (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnOnanoflower-modified electrode. Electrochim Acta 55:178

    Article  CAS  Google Scholar 

  48. Zhang C, Wang G, Ji Y, Liu M, Feng Zhang YZ, Fang B (2010) Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films. Sensors Actuators B Chem 150:247

    Article  CAS  Google Scholar 

  49. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1

    Article  CAS  Google Scholar 

  50. Yi Q, Niu F, Yu W (2011) Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films 519:3155–3161

    Article  CAS  Google Scholar 

  51. Dong B, He BL, Huang J, Gao GY, Yang Z, Li HL (2008) High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. J. Power Sources 175:266–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, under grant No HiCi/2-130-36. The authors, therefore, acknowledge with thanks DSR for technical and financial support. We wish to thank the 42TEK S.L. (www.42tek.es) for furnishing us with the relevant titanium dioxide samples needed for this analysis. This work was supported by Generalitat Valenciana project PROMETEO/2014/020. VGA ackkowledges project NASCENT, ENE2014-56237-C4-3-R, from MINECO of Spain for finantial support. Serveis Central d’Instrumentació Científica (SCIC) from Universitat Jaume is acknowledged for AFM, TEM and DRX measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed M. Rahman or Francisco Fabregat-Santiago.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Alfonso, V.G., Fabregat-Santiago, F. et al. Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach. Microchim Acta 184, 2123–2129 (2017). https://doi.org/10.1007/s00604-017-2228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2228-x

Keywords

Navigation