Log in

A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hybrid material consisting of bulk-reduced TiO2, graphene oxide (GO) and polyaniline (PANI) was fabricated by decorating TiO2 with GO, followed by in-situ oxidative chemical polymerization of aniline. The TiO2 nanoparticles (NPs) with thermally stable bulk reduction states were initially prepared from porous amorphous titanium as the precursor. The TiO2 NPs and GO were chemically conjugated to each other via amide bonds to improve the stability of the composite. The sensor, if operated in the conductivity mode, exhibits strong signal changes, and fast response and recovery times (of 32 and 17 s, respectively) to gaseous ammonia even at room temperature. Its response range extends from 5 to 300 ppm, and the lower detection limit is 5 ppm. The sensor is fairly selective and not interfered by gases such as CO, CH4, and trimethylamine, and by vapors of methanol and ethanol. It also displays good temporal stability. This is attributed to the bulk-reduced state of TiO2, the presence of oxygen functional groups on GO, and the strong adsorption and rapid diffusion of ammonia. The results also imply the presence of a synergetic effect between TiO2 and GO/PANI, which is probably beneficial for the potential application of the resulting composite as a gas sensor.

A hybrid material consisting of bulk-reduced TiO2, graphene oxide (GO) and polyaniline (PANI) was fabricated by decorating TiO2 with GO, followed by in-situ oxidative chemical polymerization of aniline. The TiO2/GO/PANI sensor exhibits strong signal changes, fast response time (32 s) and recovery time (17 s) to ammonia at room temperature. It also displays good selectivity and temporal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Hu B, Chen W, Zhou J (2013) High performance flexible sensor based on inorganic nanomaterials. Sensors Actuators B: Chem 176:522–533

    Article  CAS  Google Scholar 

  2. Comini E, Baratto C, Concina I, Faglia G, Falasconi M, Ferroni M, Galstyan V, Gobbi E, Ponzoni A, Vomiero A (2013) Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors Actuators B: Chem 179:3–20

    Article  CAS  Google Scholar 

  3. Bulakhe R, Patil S, Deshmukh P, Shinde N, Lokhande C (2013) Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sensors Actuators B: Chem 181:417–423

    Article  CAS  Google Scholar 

  4. Lin Q, Li Y, Yang M (2012) Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sensors Actuators B: Chem 173:139–147

    Article  CAS  Google Scholar 

  5. Lü R, Zhou W, Shi K, Yang Y, Wang L, Pan K, Tian C, Ren Z, Fu H (2013) Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature. Nanoscale 5:8569–8576

    Article  Google Scholar 

  6. Pawar S, Chougule M, Sen S, Patil V (2012) Development of nanostructured polyaniline-titanium dioxide gas sensors for ammonia recognition. J Appl Polym Sci 125:1418–1424

    Article  CAS  Google Scholar 

  7. Lee JS, Ha TJ, Hong MH, Park CS, Park HH (2013) The effect of multiwalled carbon nanotube do** on the CO gas sensitivity of TiO2 xerogel composite film. Appl Surf Sci 269:125–128

    Article  CAS  Google Scholar 

  8. Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors Actuators B: Chem 171:25–42

    Article  Google Scholar 

  9. **ong W, Liu HH, Liu ST (2015) Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2. Microchim Acta 182:2345–2352

    Article  CAS  Google Scholar 

  10. Lira E, Wendt S, Huo P, Hansen JØ, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133:6529–6532

    Article  CAS  Google Scholar 

  11. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Chemiresistive polyaniline-based gas sensors: A mini review. Sensors Actuators B: Chem 220:534–548

    Article  CAS  Google Scholar 

  12. Dhawale D, Salunkhe R, Patil U, Gurav K, More A, Lokhande C (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors Actuators B: Chem 134:988–992

    Article  CAS  Google Scholar 

  13. **ang C, Jiang D, Zou Y, Chu H, Qiu S, Zhang H, Xu F, Sun L, Zheng L (2015) Ammonia sensor based on polypyrrole-graphene nanocomposite decorated with titania nanoparticles. Ceram Int 41:6432–6438

    Article  CAS  Google Scholar 

  14. Ye Y, Wang P, Sun H, Tian Z, Liu J, Liang C (2015) Structural and electrochemical evaluation of a TiO2-graphene oxide based sandwich structure for lithium-ion battery anodes. RSC Adv 5:45038–45043

    Article  CAS  Google Scholar 

  15. Singh G, Choudhary A, Haranath D, Joshi AG, Singh N, Singh S, Pasricha R (2012) ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50:385–394

    Article  CAS  Google Scholar 

  16. Zhang Y, Xu J, **ang Q, Li H, Pan Q, Xu P (2009) Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J Phys Chem C 113:3430–3435

    Article  CAS  Google Scholar 

  17. Chen F, Yan F, Chen Q, Wang Y, Han L, Chen Z, Fang S (2014) Fabrication of Fe3O4@ SiO2@ TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans 43:13537–13544

    Article  CAS  Google Scholar 

  18. Peng Y, Li J (2013) Ammonia adsorption on graphene and graphene oxide: a first-principles study. Front Environ Sci Eng 7:403–411

    Article  CAS  Google Scholar 

  19. Wang M, Zhai S, Ye Z, He L, Peng D, Feng X, Yang Y, Fang S, Zhang H, Zhang Z (2015) An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme. Dalton Trans 44:6473–6479

    Article  CAS  Google Scholar 

  20. Hu T, Sun X, Sun H, Yu M, Lu F, Liu C, Lian J (2013) Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51:322–326

    Article  CAS  Google Scholar 

  21. Huang H, Gan M, Ma L, Yu L, Hu H, Yang F, Li Y, Ge C (2015) Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors. J Alloys Comp 630:214–221

    Article  CAS  Google Scholar 

  22. Kim CH, Kim BH, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481

    Article  CAS  Google Scholar 

  23. Zhang L, **a J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  CAS  Google Scholar 

  24. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 47:7361–7367

    Article  CAS  Google Scholar 

  25. **g L, Yang ZY, Zhao YF, Zhang YX, Guo X, Yan YM, Sun KN (2014) Ternary polyaniline-graphene-TiO2 hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. J Mater Chem A 2:1068–1075

  26. Zhang F, Cao H, Yue D, Zhang J, Qu M (2012) Enhanced Anode Performances of Polyaniline-TiO2-Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorg Chem 51:9544–9551

    Article  CAS  Google Scholar 

  27. Tan S, Ji Y, Zhao Y, Zhao A, Wang B, Yang J, Hou J (2011) Molecular oxygen adsorption behaviors on the rutile TiO2 (110)-1 × 1 surface: an in situ study with low-temperature scanning tunneling microscopy. J Am Chem Soc 133:2002–2009

    Article  CAS  Google Scholar 

  28. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93:263103

  29. Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Sandro S, Ottaviano L (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117:10683–10690

    Article  CAS  Google Scholar 

  30. Yavari F, Chen ZP, Thomas AV, Ren WC, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three dimensional graphene foam network. Sci Rep 1:166

    Article  Google Scholar 

  31. Lupan O, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN (2010) Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sensors Actuators B: Chem 144:56–66

    Article  CAS  Google Scholar 

  32. Xu H, Chen X, Zhang J, Wang J, Cao B, Cui D (2013) NO2 gas sensing with SnO2-ZnO/PANI composite thick film fabricated from porous nanosolid. Sensors Actuators B: Chem 176:166–173

    Article  CAS  Google Scholar 

  33. Deshpande N, Gudage Y, Sharma R, Vyas J, Kim J, Lee Y (2009) Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors Actuators B: Chem 138:76–84

    Article  CAS  Google Scholar 

  34. Tai H, Jiang Y, **e G, Yu J, Chen X (2007) Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sensors Actuators B: Chem 125:644–650

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for the National Natural Science Foundation of China (NSFC: Account No. 51173172), Science and Technology Opening Cooperation Project of Henan Province (Account No. 132106000076) and the Key Project of Science and Technology of Education Department of Henan Province (Account No. 14 A150003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denggao Jiang or Zhihong Zhang.

Ethics declarations

The author(s) declare that theyhave no competing interests.

Electronic Supplementary Material

ESM 1

(DOC 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Yang, G., Jiang, D. et al. A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183, 2871–2878 (2016). https://doi.org/10.1007/s00604-016-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1912-6

Keywords

Navigation