Log in

A nanocomposite consisting of ZnO decorated graphene oxide nanoribbons for resistive sensing of NO2 gas at room temperature

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite prepared from zinc oxide and graphene oxide nanoribbons (ZnO/GONR) is demonstrated to enable improved room temperature (RT) detection of nitrogen dioxide (NO2). Low-cost hydrothermal synthesis is used to construct the composite. The properties of the resistive sensor, including the sensitivity, response and recovery times, repeatability and selectivity, were investigated in the NO2 concentration range from 1 to 50 ppm at RT. The sensor, typically operated at a voltage of 5 V, exhibits a low detection limit of 1 ppm, a fast response–recovery time, and excellent repeatability which outperforms that of pure ZnO sensors. The sensing mechanism is explained in terms of a redox reaction between NO2 and oxygen anions on the surface of the ZnO/GONR composite.

Schematic representation of the NO2 sensing mechanisms on the surface of the ZnO/GONR composite and overall improved NO2 gas-sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Y, Tian C, Wang J, Sun L, Shi K, Zhou W, Fu H (2014) Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale 6(13):7369–7378

    Article  CAS  Google Scholar 

  2. Kumar R, Goel N, Kumar M (2017) UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. Acs Sensors 2(11):1744–1752

    Article  CAS  Google Scholar 

  3. Ma S, Yuan D, Wang Y, Jiao Z (2018) Monolayer GeS as a potential candidate for NO2 gas sensors and capturers. J Mater Chem C 6(30):8082–8091

    Article  CAS  Google Scholar 

  4. Wang Y, Liu C, Wang Z, Song Z, Zhou X, Han N, Chen Y (2019) Sputtered SnO2: NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sensors Actuators B Chem 278(1):28–38

    Article  Google Scholar 

  5. Li W, Teng C, Sun Y, Cai L, Xu J, Sun M, Li X, Yang X, **ang L, **e D, Ren T (2018) A sprayed, scalable, wearable and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl Mater Interfaces 10(40):34485–34493

    Article  CAS  Google Scholar 

  6. Wang Z, Huang L, Zhu X, Zhou X, Chi L (2017) An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv Mater 29(38):8

    Google Scholar 

  7. Choi SJ, Jang JS, Park HJ, Kim ID (2017) Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv Funct Mater 27(13):9

    Google Scholar 

  8. Melios C, Panchal V, Edmonds K, Lartsev A, Yakimova R, Kazakova O (2018) Detection of ultralow concentration NO2 in complex environment using epitaxial graphene sensors. ACS Sensors 3(9):1666–1674

    Article  CAS  Google Scholar 

  9. Hu J, Zou C, Su Y, Li M, Han Y, Kong ESW, Yang Z, Zhang Y (2018) An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J Mater Chem A 6(35):17120–17131

    Article  CAS  Google Scholar 

  10. Liu Y, Wang Y, Ikram M, Lv H, Chang J, Li Z, Ma L, Rehman AU, Lu G, Chen J, Shi K (2018) Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-level NOx gas sensor. ACS Sensors 3(8):1576–1583

    Article  CAS  Google Scholar 

  11. Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41(13):2405–2408

    Article  CAS  Google Scholar 

  12. Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42(9):3721–3739

    Article  CAS  Google Scholar 

  13. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    Article  CAS  Google Scholar 

  14. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzip** of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–U875

    Article  CAS  Google Scholar 

  15. Pak Y, Kim SM, Jeong H, Kang CG, Park JS, Song H, Lee R, Myoung NS, Lee BH, Seo S, Kim JT, Jung GY (2014) Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons. ACS Appl Mater Interfaces 6(15):13293–13298

    Article  CAS  Google Scholar 

  16. Rao SS, Stesmans A, Keunen K, Kosynkin DV, Higginbotham A, Tour JM (2011) Unzipped graphene nanoribbons as sensitive O2 sensors: electron spin resonance probing and dissociation kinetics. Appl Phys Lett 98(8):0831161–0831163

    Google Scholar 

  17. Zhang Z, Xue Q, Du Y, Ling C, **ng W (2014) Highly enhanced sensitivity of hydrogen sensors using novel palladium-decorated graphene nanoribbon film/SiO2/Si structures. J Mater Chem A 2(38):15931–15937

    Article  CAS  Google Scholar 

  18. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-do** of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771

    Article  CAS  Google Scholar 

  19. Berahman M, Sheikhi MH (2015) Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sensors Actuators B Chem 219:338–345

    Article  CAS  Google Scholar 

  20. Patil VL, Vanalakar SA, Patil PS, Kim JH (2017) Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sensors Actuators B Chem 239:1185–1193

    Article  CAS  Google Scholar 

  21. Wang X, Sun F, Duan Y, Yin Z, Luo W, Huang Y, Chen J (2015) Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J Mater Chem C 3(43):11397–11405

    Article  CAS  Google Scholar 

  22. Kathiravan D, Huang BR, Saravanan A (2017) Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors. ACS Appl Mater Interfaces 9(13):12064–12072

    Article  CAS  Google Scholar 

  23. Wang C, Wang LJ, Zhang L, ** R, Huang H, Zhang SH, Pan GB (2019) Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing. J Alloys Compd 790:363–369

    Article  CAS  Google Scholar 

  24. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069

    Article  CAS  Google Scholar 

  25. Navale YH, Navale ST, Ramgir NS, Stadler FJ, Gupta SK, Aswal DK, Patil VB (2017) Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sensors Actuators B Chem 251:551–563

    Article  CAS  Google Scholar 

  26. Wang Z, Han T, Fei T, Liu S, Zhang T (2018) Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids. ACS Appl Mater Interfaces 10(48):41773–41783

    Article  CAS  Google Scholar 

  27. Palacios JJ (2014) Graphene nanoribbons: electrons go ballistic. Nat Phys 10(3):182–183

    Article  CAS  Google Scholar 

  28. Joshi N, Hayasaka T, Liu YM, Liu HL, Oliveira ON, Lin LW (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213

    Article  Google Scholar 

  29. Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4(10):1919–1924

    Article  CAS  Google Scholar 

  30. Wang C, Wang ZG, ** R, Zhang L, Zhang SH, Wang LJ, Pan GB (2019) In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature. Sensors Actuators B Chem 292:270–276

    Article  CAS  Google Scholar 

  31. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134(10):4905–4917

    Article  CAS  Google Scholar 

  32. Xu K, Tian S, Zhu J, Yang Y, Shi J, Yu T, Yuan C (2018) High selectivity of sulfur-doped SnO2 in NO2 detection at lower operating temperatures. Nanoscale 10(44):20761–20771

    Article  CAS  Google Scholar 

  33. Zhang D, Liu J, Chang H, Liu A, **a B (2015) Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv 5(24):18666–18672

    Article  CAS  Google Scholar 

  34. Pinna N, Neri G, Antonietti M, Niederberger M (2004) Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew Chem Int Ed 43(33):4345–4349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Foundation of Jiangsu Province (BK20160058), the Key Research Program of Jiangsu Province (BE2015073) and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge-Bo Pan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, L., Huang, H. et al. A nanocomposite consisting of ZnO decorated graphene oxide nanoribbons for resistive sensing of NO2 gas at room temperature. Microchim Acta 186, 554 (2019). https://doi.org/10.1007/s00604-019-3628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3628-x

Keywords

Navigation