Log in

Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The brain natriuretic peptide (BNP) is known to be an effective indicator of heart failure. It has been widely adopted as a parameter for the evaluation of heart function of cardiovascular and cerebrovascular diseases (CVDs). Current immune-recognition based methods for the detection of BNP are limited, to a certain extent, by the poor stability of the antibody and by high costs. The availability of an aptamer specific for BNP would greatly assist in the rapid and early diagnosis of CVDs. In order to screen for such an aptamer by the SELEX method, we have used magnetic microparticles (m-MPs) as the separation substrate for immobilization of target BNP. The use of m-MPs for rapid separation of combined aptamers enables bound oligonucleotides to be separated directly, quickly, and with high efficiency. After 14 rounds of selection, a panel of six aptamers against BNP was identified. Their dissociation constants range from 12.5 to 139 nM. The classical technique for conjugation of a target to m-MPs is known to be applicable to various fields, and we conclude that this m-MP-based SELEX process provides a general strategy for screening of specific aptamers against various analytes.

Rapid selection of aptamer to brain natriuretic peptide (BNP) with high affinity and specificity for rapid detection and daily monitoring of heart functions with the magnetic microparticles-based screening platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alwan A (2011) Global status report on non-communicable diseases 2010. World Health Organization: 176

  2. Christian M (2012) Happy birthday BNP. Eur Heart J: Acute Cardiovasc Care 1:109–110

    Google Scholar 

  3. Maeda K, Tsutamota T, Wada A, Hisanaga T, Kinoshita M (1998) Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 135:825–832

    Article  CAS  Google Scholar 

  4. Lin MC, Nawarak J, Chen TY, Tsai HY, Hsieh JF, Sinchaikul S, Chen ST (2009) Rapid detection of natriuretic peptides by a microfluidic lab chip analyzer with DNA aptamers: application of natriuretic peptide detection. Biomicrofluidics 3:034101–034108

    Article  Google Scholar 

  5. Qin YW, Teng X, He JQ, Du J, Tang CS, Qi YF (2013) Increased plasma levels of intermedin and brain natriuretic peptide associated with severity of coronary stenosis in acute coronary syndrome. Peptides 42:84–88

    Article  CAS  Google Scholar 

  6. Patel JB, Valencik ML, Pritchett AM, Burnett JC, McDonald JA, Redfield MM (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:H777–784

    Article  CAS  Google Scholar 

  7. Tamura N, Ogawa Y, Yasoda A, Itoh H, Saito Y, Nakao K (1996) Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. J Mol Cell Cardiol 28:1811–1815

    Article  CAS  Google Scholar 

  8. Koch AME, Zink S, Singer H, Dittrich S (2008) B-type natriuretic peptide levels in patients with functionally univentricular hearts after total cavopulmonary connection. Eur J Heart Fail 10:60–62

    Article  CAS  Google Scholar 

  9. Vogelsang TW, Jensen RJ, Monrad AL, Russ K, Olesen UH, Hesse B, Kjaer A (2007) Independent effects of both right and left ventricular function on plasma brain natriuretic peptide. Eur J Heart Fail 9:892–896

    Article  CAS  Google Scholar 

  10. Ferreira ALP, Reis ZS, Braga J, Leite HV, Cabral ACV (2009) Relationship between cardiofemoral index and the plasma concentration of brain natriuretic peptide in anemic fetuses associated with Rh alloimmunization. Arch Gynecol Obstet 279:335–339

    Article  CAS  Google Scholar 

  11. Hogenhuis J, Voors AA, Jaarsma T, Hillege HL, Boomsma F, van Veldhuisen DJ (2005) Influence of age on natriuretic peptides in patients with chronic heart failure: a comparison between ANP/NT-ANP and BNP/NT-proBNP. Eur J Heart Fail 7:81–86

    Article  CAS  Google Scholar 

  12. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  13. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  14. Liu GQ, Yu XF, Xue F, Chen W, Ye YK, Yang XJ, Lian YQ, Yan Y, Zong K (2012) Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8. Microchim Acta 178:237–244

    Article  CAS  Google Scholar 

  15. Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1:538–550

    CAS  Google Scholar 

  16. Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. J Biol Chem 5:609–617

    Article  CAS  Google Scholar 

  17. Yang Q, Goldstein IJ, Mei HY, Engelke DRX, Affiliations A (1998) DNA ligands that bind tightly and selectively to cellobiose. Proc Natl Acad Sci U S A 95:5462–5467

    Article  CAS  Google Scholar 

  18. Mei ZL, Chu HQ, Chen W, Xue F, Liu J, Xu HN, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol a in water samples by label free aptasensor. Biosensors & Bio electronics 39:26–30

    Article  CAS  Google Scholar 

  19. Huang L, Wu JJ, Zheng L, Qian HS, Xue F, Wu YC, Pan DD, Adeloju SB, Chen W (2013) Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Anal Chem 85:10842–10849

    Article  CAS  Google Scholar 

  20. Famulok M, Huttenhofer A (1996) In vitro selection analysis of neomycin binding RNAs with a mutagenized pool of variants of the 16S rRNA decoding region. Biochemistry 35:4265–4270

    Article  CAS  Google Scholar 

  21. Fang XH, Tan WH (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    Article  CAS  Google Scholar 

  22. Mascini M, Palchetti I, Tombelli S (2010) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332

    Article  Google Scholar 

  23. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem Lett 9:2525–2531

    Article  CAS  Google Scholar 

  24. Charlton J, Kirschenheuter GP, Smith D (1997) Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library. Biochemistry 36:3018–3026

    Article  CAS  Google Scholar 

  25. Zimmermann GR, Wick CL, Shields TP, Jenison RD, Pardi A (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6:659–667

    Article  CAS  Google Scholar 

  26. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    Article  CAS  Google Scholar 

  27. Golden MC, Collins BD, Willis MC (2000) Diagnostic potential of Photo SELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178

    Article  CAS  Google Scholar 

  28. Niazi JH, Lee SJ, Kim YS, Gu MB (2007) ssDNA aptamers that selectively bind oxytetracycline. Bioorg Med Chem 16:1265–1261

    Google Scholar 

  29. Bruno JG, Kiel L (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32:178–183

    CAS  Google Scholar 

  30. Wu JJ, Zhu YY, Xue F, Mei ZL, Yao L, Wang X, Zheng L, Liu J, Liu GD, Peng CF, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181:479–491

    Article  CAS  Google Scholar 

  31. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, **ong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetic particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879

    Article  CAS  Google Scholar 

  32. Chen W, Shen HB, Li XY, Xu JM (2006) Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34+ hematopoietic stem cells. Appl Surf Sci 253:1762–1769

    Article  CAS  Google Scholar 

  33. Yang J, Bowser MT (2013) Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small molecule porphyrin target. Anal Chem 85:1525–1530

    Article  CAS  Google Scholar 

  34. Hu R, Liu T, Zhang XB, Huan SY, Wu CC, Fu T, Tan WH (2014) Multicolor fluorescent biosensor for multiplexed detection of DNA. Anal Chem 86:5009–5016

    Article  CAS  Google Scholar 

  35. Wang JC, Wang YS, Rang WQ, Xue JH, Zhou B, Liu L, Qian QM, Wang YS, Yin JC (2014) Colorimetric determination of 8-hydroxy-2’-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Microchim Acta 181:903–910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Huangshan Young Scholar Fund of Hefei University of Technology (407–037025), the NSFC grant of 31328009 and 31301460, the Science and Technology Research Project of General AQSIQ of China (201210127, 201310135), the 12th 5 Years Key Programs (2012BAK08B01-2, 2012BAK17B10, SS2012AA101001), National and Zhejiang Public Benefit Research Project (201313010, 2014C32051) and the Fundamental Research Funds for the Central Universities 2013HGCH0008 and partly supported by 62YYD201309 and 2012BAD43B03 .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Lu or Wei Chen.

Additional information

Ying Wang and **g**g Wu contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, J., Chen, Y. et al. Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide. Microchim Acta 182, 331–339 (2015). https://doi.org/10.1007/s00604-014-1338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1338-y

Keywords

Navigation