Log in

Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A triple recognition voltammetric method for the determination of brain natriuretic peptide (BNP) is described. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MagNPs), sized 26 and 310 nm, respectively, were synthesized and characterized by transmission electron microscopy (TEM), FT-IR, dynamic light scattering (DLS), and Z-potential measurements. Antibody-modified MagNPs and methylene blue–labeled aptamer (Apt-MB)–modified AuNPs were used as an identifier, a signal reporter, and an amplifier, respectively. In the presence of BNP, the magnetic gold nanocomposite is formed through cascade conjugation via specific interaction. It then hybridized with complementary DNA (cDNA) on the interface, thereby amplifying the current signal of Apt-MB and increasing the selectivity of the immunoassay. Results obtained demonstrate the development of a highly selective method with a detection limit of 0.56 pg mL−1 and a linear response over the concentration range 1–10,000 pg mL−1. The standard deviation of the method is < 6% while the recovery ranged from 92.2 to 104.2%.

Schematic representation of triple recognition electrochemical immunosensor based on two functionalized nanoparticles (antibody-modified magnetic nanoparticle (MNP-Ab) and aptamer-modified gold nanoparticle (AuNPs-Apt)) for determination of brain natriuretic peptide (BNP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarangadharan I, Wang SL, Tai TY, Pulikkathodi AK, Hsu CP, Chiang HHK, Wang YL (2018) Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection. Biosens Bioelectron 107:259–265. https://doi.org/10.1016/j.bios.2018.02.036

    Article  CAS  PubMed  Google Scholar 

  2. Lin DCC, Diamandis EP, Januzzi JL, Maisel A, Jaffe AS, Clerico A (2014) Natriuretic peptides in heart failure. Clin Chem 60:1040–1046. https://doi.org/10.1373/clinchem.2014.223057

    Article  PubMed  Google Scholar 

  3. Li X, Liu L, Dong X, Zhao G, Li Y, Miao J, Fang J, Cui M, Wei Q, Cao W (2019) Dual mode competitive electrochemical immunoassay for B-type natriuretic peptide based on GS/SnO2/polyaniline-Au and ZnCo2O4/N-CNTs. Biosens Bioelectron 126:448–454. https://doi.org/10.1016/j.bios.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  4. Serafín V, Torrente-Rodríguez RM, González-Cortés A, García de Frutos P, Sabaté M, Campuzano S, Yáñez-Sedeño P, **arróna JM (2018) An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 179:131–138. https://doi.org/10.1016/j.talanta.2017.10.063

    Article  CAS  PubMed  Google Scholar 

  5. Szunerits S, Mishyn V, Grabowska I, Boukherroub R (2019) Electrochemical cardiovascular platforms: current state of the art and beyond. Biosens Bioelectron 131:287–298. https://doi.org/10.1016/j.bios.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  6. Nishikimi T, Okamoto H, Nakamura M, Ogawa N, Horii K, Nagata K, Nakagawa Y, Kinoshita H, Yamada C (2013) Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure. PLoS One 8:e53233. https://doi.org/10.1371/journal.pone.0053233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jang HR, Wark AW, Baek SH, Chung BH, Lee HJ (2014) Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform. Anal Chem 86:814–819. https://doi.org/10.1021/ac4033565

    Article  CAS  PubMed  Google Scholar 

  8. Kim S, Wark AW, Lee HJ (2016) Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem 88:7793–7799. https://doi.org/10.1021/acs.analchem.6b01825

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Li L, Hu L, Zhang Y, Wu D, Ma H, Wei Q (2019) An electrochemiluminescence immunosensor for the N-terminal brain natriuretic peptide based on the high quenching ability of polydopamine. Microchim Acta 186:606. https://doi.org/10.1007/s00604-019-3709-x

    Article  CAS  Google Scholar 

  10. Lim MJ, Foster GJ, Gite S, Ostendorff HP, Narod S, Rothschild KJ (2010) An ELISA-based high throughput protein truncation test for inherited breast cancer. Breast Cancer Res 12:78–79. https://doi.org/10.1186/bcr2722

    Article  CAS  Google Scholar 

  11. Auld D, Lea W, Davis MI, Simeonov A (2013) Literature search and review: detected through a quick glance. Assay Drug Dev Techn 11:1–8. https://doi.org/10.1089/adt.2013.1101.lr

    Article  CAS  Google Scholar 

  12. Toh SY, Citartan M, Gopinath SC, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. https://doi.org/10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  13. Wang P, Hatcher KL, Bartz JC, Chen SG, Skinner P, Sreevatsan S (2011) Selection and characterization of DNA aptamers against PrPSc. Exp Biol Med 236:466–476. https://doi.org/10.1258/ebm.2011.010323

    Article  CAS  Google Scholar 

  14. Shamah SM, Healy JM, Cload ST (2008) Complex target SELEX. Acc Chem Res 41:130–138. https://doi.org/10.1021/ar700142z

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, Nam O, ** E, Gu MB (2019) A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens Bioelectron 123:160–166. https://doi.org/10.1016/j.bios.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Wang X, Sun Y, Dai Y, Sun W, Zhu X, Luo C (2019) A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation. Sensors Actuators B Chem 289:56–64. https://doi.org/10.1016/j.snb.2019.03.075

    Article  CAS  Google Scholar 

  17. Zhang W, He Z, Yi L, Mao S, Li H, Lin JM (2018) A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 102:652–660. https://doi.org/10.1016/j.bios.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  18. Yoon J, Cho SH, Seong H (2017) Multifunctional ultrasmall superparamagnetic iron oxide nanoparticles as a theranostic agent. Colloid Surface A 520:892–902. https://doi.org/10.1016/j.colsurfa.2017.02.080

    Article  CAS  Google Scholar 

  19. Melnychuk N, Klymchenko AS (2018) DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright FRET platform for amplified detection of nucleic acids. J Am Chem Soc 140:10856–10865. https://doi.org/10.1021/jacs.8b05840

    Article  CAS  PubMed  Google Scholar 

  20. Zheng L, Qi P, Zhang D (2018) A simple, rapid and cost-effective colorimetric assay based on the 4-mercaptophenylboronic acid functionalized silver nanoparticles for bacteria monitoring. Sensors Actuators B Chem 260:983–989. https://doi.org/10.1016/j.snb.2018.01.115

    Article  CAS  Google Scholar 

  21. Lv S, Sheng J, Zhao S, Liu M, Chen L (2018) The detection of brucellosis antibody in whole serum based on the low-fouling electrochemical immunosensor fabricated with magnetic Fe3O4@Au@PEG@HA nanoparticles. Biosens Bioelectron 117:138–144. https://doi.org/10.1016/j.bios.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  22. Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Gooding JJ (2018) Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol 13:1066–1071. https://doi.org/10.1038/s41565-018-0232-x

    Article  CAS  PubMed  Google Scholar 

  23. Tetin SY, Ruan Q, Saldana SC, Pope MR, Chen Y, Wu H, Richardson PL (2006) Interactions of two monoclonal antibodies with BNP: high resolution epitope map** using fluorescence correlation spectroscopy. Biochemistry 45:14155–14165. https://doi.org/10.1021/bi0607047

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Wu J, Chen Y, Xue F, Teng J, Cao J, Chen W (2015) Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide. Microchim Acta 182:331–339. https://doi.org/10.1007/s00604-014-1338-y

    Article  CAS  Google Scholar 

  25. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743. https://doi.org/10.1021/ac00100a008

    Article  CAS  Google Scholar 

  26. Park JW, Shumaker-Parry JS (2014) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc 136:1907–1921. https://doi.org/10.1021/ja4097384

    Article  CAS  PubMed  Google Scholar 

  27. Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A, Mata-Miranda MM, González-Díaz CA (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 9:6419. https://doi.org/10.1038/s41598-019-42776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan T, Du Y, Yao Y, Wu J, Meng S, Luo J, Gao F (2018) Rolling circle amplification triggered poly adenine-gold nanoparticles production for label-free electrochemical detection of thrombin. Sensors Actuators B Chem 266:9–18. https://doi.org/10.1016/j.snb.2018.03.112

    Article  CAS  Google Scholar 

  29. Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, Ogale S, Szunerits S (2018) Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 3:12010–12018. https://doi.org/10.1021/acsomega.8b01558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2:205–220. https://doi.org/10.3390/bios2020205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu R, Lu P, Wu B, Wang X, Pang X, Du B, Fan D, Wei Q (2018) Using SiO2/PDA-Ag NPs to dual-inhibited photoelectrochemical activity of CeO2-CdS composites fabricated a novel immunosensor for BNP ultrasensitive detection. Sensors Actuators B Chem 274:349–355. https://doi.org/10.1016/j.snb.2018.07.122

    Article  CAS  Google Scholar 

  32. Lei YM, **ao MM, Li YT, Xu L, Zhang H, Zhang ZY, Zhang GJ (2017) Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron 91:1–7. https://doi.org/10.1016/j.bios.2016.12.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61275085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhu, ZZ., Huang, X. et al. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide. Microchim Acta 187, 231 (2020). https://doi.org/10.1007/s00604-020-4221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4221-z

Keywords

Navigation