Log in

Ischemia–reperfusion injury in patients with fatty liver and the clinical impact of steatotic liver on hepatic surgery

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Hepatic steatosis is one of the most common hepatic disorders in developed countries. The epidemic of obesity in developed countries has increased with its attendant complications, including metabolic syndrome and non-alcoholic fatty liver disease. Steatotic livers are particularly vulnerable to ischemia/reperfusion injury, resulting in an increased risk of postoperative morbidity and mortality after liver surgery, including liver transplantation. There is growing understanding of the molecular and cellular mechanisms and therapeutic approaches for treating ischemia/reperfusion injury in patients with steatotic livers. This review discusses the mechanisms underlying the susceptibility of steatotic livers to ischemia/reperfusion injuries, such as mitochondrial dysfunction and signal transduction alterations, and summarizes the clinical impact of steatotic livers in the setting of hepatic resection and liver transplantation. This review also describes potential therapeutic approaches, such as ischemic and pharmacological preconditioning, to prevent ischemia/reperfusion injury in patients with steatotic livers. Other approaches, including machine perfusion, are also under clinical investigation; however, many pharmacological approaches developed through basic research are not yet suitable for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kleiner DE, Brunt EM, Natta MV, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    PubMed  Google Scholar 

  2. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288:E462–8.

    CAS  PubMed  Google Scholar 

  3. Chittu S, Farrell GC, Hashimoto E, Saibara T, Lau GK, Sollano JD. Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J Gastroenterol Hepatol. 2007;22:778–87.

    Google Scholar 

  4. Amarapurkar DN, Hashimoto E, Lesmana LA, Sollano JD, Chen PJ, Goh KL. How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? J Gastroenterol Hepatol. 2007;22:788–93.

    PubMed  Google Scholar 

  5. Petrowsky H, McCormack L, Trujillo M, Selzner M, Jochum W, Clavian PA. A prospective, randomized, controlled trial comparing intermittent portal triad clam** versus ischemic preconditioning with continuous clam** for major liver resection. Ann Surg. 2006;244:921–8.

    PubMed Central  PubMed  Google Scholar 

  6. Angulo P. Nonalcoholic fatty liver disease and liver transplantation. Liver Transpl. 2006;12(523–534):5.

    Google Scholar 

  7. McCormack L, Petrowsky H, Jochum W, Furrer K, Clavien PA. Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: a matched case–control study. Ann Surg. 2007;245:923–30.

    PubMed Central  PubMed  Google Scholar 

  8. Gomez D, Malik HZ, Bonney GK, Wong V, Toogood GJ, Lodge JP, et al. Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. Br J Surg. 2007;94:1395–402.

    CAS  PubMed  Google Scholar 

  9. Trevisani F, Colantoni A, Caraceni P, Van Thiel DH. The use of donor fatty liver for liver transplantation: a challenge or a quagmire? J Hepatol. 1996;24:114–21.

    CAS  PubMed  Google Scholar 

  10. Hui AM, Kawasaki S, Makuuchi M, Nakayama J, Ikegami T, Miyagawa S. Liver injury following normothermic ischemia in steatotic rat liver. Hepatology. 1994;20:1287–93.

    CAS  PubMed  Google Scholar 

  11. Wada K, Fujimoto K, Fujikawa Y, Shibayama Y, Mitsui H, Nakata K. Sinusoidal stenosis as the cause of portal hypertension in choline deficient diet induced fatty cirrhosis of the rat liver. Acta Pathol Jpn. 1974;24:207–17.

    CAS  PubMed  Google Scholar 

  12. Caraceni P, Ryu HS, Subbotin V, De Maria N, Colantoni A, Roberts L, et al. Rat hepatocytes isolated from alcohol-induced fatty liver have an increased sensitivity to anoxic injury. Hepatology. 1997;25:943–9.

    CAS  PubMed  Google Scholar 

  13. Nanashima A, Abo T, Hamasaki K, Wakata K, Kunizaki M, Tou K, et al. Predictors of intraoperative blood loss in patients undergoing hepatectomy. Surg Today. 2013;43:485–93.

    PubMed  Google Scholar 

  14. Lentsch A, kato A, Yoshidome H, McMasters K, Edwards M. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion. Hepatology. 2000;32:169–73.

    CAS  PubMed  Google Scholar 

  15. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology. 2000;32:1280–8.

    CAS  PubMed  Google Scholar 

  16. Malhi H, Gores G, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006;43:S31–44.

    CAS  PubMed  Google Scholar 

  17. Selzner N, Selzner M, Jochum W, Amann-Vesti B, Graf R, Clavien PA. Mouse livers with macrosteatosis are more susceptible to normothermic ischemic injury than those with microsteatosis. J Hepatol. 2006;44:694–701.

    PubMed  Google Scholar 

  18. Vetelaninen R, Van Vliet A, Gouma DJ, Van Gulik TM. Steatosis as a risk factor in liver surgery. Ann Surg. 2007;245:20–30.

    Google Scholar 

  19. Caraceni P, Bianchi C, Domenicali M, Pertosa AM, Maiolini E, Parenti G, et al. Impairment of mitochondrial oxidative phosphorylation in rat fatty liver exposed to preservation-reperfusion injury. J Hepatol. 2004;41:82–8.

    CAS  PubMed  Google Scholar 

  20. Echtay K, Winkler E, Frischmuth K, Klingenberg M. Uncoupling protein 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA. 2001;98:1416–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Echtay K, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, et al. Nature. 2002;415:96–9.

    CAS  PubMed  Google Scholar 

  22. Cortez-Pinto H, Lin HZ, Yang SQ, Costa SOD, Diehl AM. Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterology. 1999;116:1184–93.

    CAS  PubMed  Google Scholar 

  23. Rashid A, Wu TC, Huang CC, Chen CH, Lin HZ, Yang SQ, et al. Mitochondrial proteins that regulate apoptosis and necrosis are induced in mouse fatty liver. Hepatology. 1999;29:1131–8.

    CAS  PubMed  Google Scholar 

  24. Chavin KD, Yang SQ, Lin HZ, Chatham J, Chacko VP, Hoek JB, et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem. 1999;274:5692–700.

    CAS  PubMed  Google Scholar 

  25. Evans ZP, Ellett JD, Schmit MG, Schnellmann RG, Chavin KD. Mitochondrial uncoupling protein-2 mediates steatotic liver injury following ischemia/reperfusion. J Biol Chem. 2008;283:8573–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischemia–reperfusion injury. Gut. 2008;57:957–65.

    CAS  PubMed  Google Scholar 

  27. Chavin KD, Fiorini RN, Shafizadeh S, Cheng G, Wan C, Evans Z, et al. Fatty acid synthase blockade protects steatotic livers from warm ischemia reperfusion injury and transplantation. Am J Transpl. 2004;4:1440–7.

    CAS  Google Scholar 

  28. Fiorini RN, Donovan JL, Rodwell D, Evans Z, Cheng G, May HD, et al. Short-term administration of (−)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transpl. 2005;11:298–308.

    PubMed  Google Scholar 

  29. Tolba RH, Putz U, Decker D, Dombrowski F, Lauschke H. l-Carnitine ameliorates abnormal vulnerability of steatotic rat livers to cold ischemic preservation. Transplantation. 2003;76:1681–6.

    CAS  PubMed  Google Scholar 

  30. Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology. 2011;53:1752–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Tiriveedhi V, Conzen KD, Lian-Conlin JL, Upadhya G, Malone J, Townsend RR, et al. The role of molecular chaperons in warm ischemia and reperfusion injury in the steatotic liver: a proteomic study. BMC Biochem. 2012;13:17–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Mosbah IB, Alfany-Fernandez I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia–reperfusion. Cell Death Dis. 2010;1:e52.

    PubMed Central  PubMed  Google Scholar 

  33. Anderson CD, Upadhya G, Conzen KD, Jia J, Brunt EM, Tiriveedhi V, et al. Endoplasmic reticulum stress is a mediator of posttransplant injury in severely steatotic liver allografts. Liver Transpl. 2011;17:189–200.

    PubMed Central  PubMed  Google Scholar 

  34. Elias-Miro M, Jimenez-Castro MB, Mendes-Braz M, Casillas-Ramirez A, Peralta C. The current knowledge of the role of PPAR in hepatic ischemia–reperfusion injury. PPAR Res. 2012;2012:802384.

  35. Pettinelli P, del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, et al. Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta. 2009;1792:1080–6.

    CAS  PubMed  Google Scholar 

  36. Pettineli O, Videla LA. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrin Metabol. 2011;96:1424–30.

    Google Scholar 

  37. Teoh NC, Williams J, Hartley J, Yu J, McCuskey RS, Farrell GC. Short-term therapy with peroxisome proliferation-activator receptor-α agonist wy-14,643 protects murine fatty liver agonist ischemia–reperfusion injury. Hepatology. 2010;51:996–1006.

    CAS  PubMed  Google Scholar 

  38. Massip-Salcedo M, Zaouali MA, Padrissa-Altes S, Casillas-Ramirez A, Rodes J, Rosello-Catafau J, et al. Activation of peroxisome proliferators-activated receptor-αinhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia–reperfusion. Hepatology. 2008;47:461–72.

    CAS  PubMed  Google Scholar 

  39. Elias-Miro M, Massip-Salcedo M, Jimenez-Castro M, Peralta C. Does adiponectin benefit steatotic liver transplantation? Liver Transpl. 2011;17:993–1004.

    PubMed  Google Scholar 

  40. Mosbath IB, Rosello-Catafau J, Franco-Gou R, Abdennebi HB, Saidane D, Ramella-Virieux S, et al. Preservation of steatotic livers in IGL-1 solution. Liver Transpl. 2006;12:1215–23.

    Google Scholar 

  41. Zaouali MA, Reiter RJ, Padrissa-Altes S, Boncompagni E, Garcia JJ, Ben Abnennebi H, et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J Pineal Res. 2011;50:213–21.

    CAS  PubMed  Google Scholar 

  42. Man K, Zhao Y, Xu A, Lo CM, Lam KSL, Ng KT, et al. Fat-derived hormone adiponectin combined with FTY720 significantly improves small-for-size fatty liver graft survival. Am J Transpl. 2006;6:467–76.

    CAS  Google Scholar 

  43. Elias-Miro M, Massip-Salcedo M, Jimenez-Castro M, Peralta C. Does adiponectin benefit steatotic liver transplantation? Liver Transpl. 2011;17:993–1004.

    PubMed  Google Scholar 

  44. Casillas-Ramirez A, Amine-Zaouali M, Massip-Salcedo M, Padrissa-Altes S, Bintanel-Morcillo M, Ramalho F, et al. Inhibition of angiotensin II action protects rat steatotic livers against ischemia–reperfusion injury. Crit Care Med. 2008;36:1256–66.

    CAS  PubMed  Google Scholar 

  45. Casillas-Ramirez A, Zaouali A, Padrissa-Altes S, Ben MI, Pertosa A, Alfany-Fernandez I, et al. Insulin-like growth factor and epidermal growth factor tretament: new approaches to protecting ateatotic livers against ischemia–reperfusion injury. Endocrinology. 2009;150:3153–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Casillas-Ramirez A, Alfany-Fernandez I, Massip-Salcedo M, Juan ME, Planas JM, Serafin A, et al. Retinol-binding protein 4 and peroxisome proliferatior-activated receptor-γin steatotic liver transplantation. J Parmacol Exp Ther. 2011;338:143–53.

    CAS  Google Scholar 

  47. Jimenez-Castro MB, Elias-Miro M, Mendes-Braz M, Lemoine A, Rimola A, Rodes J, et al. Tauroursodeoxycholic acid affects PPARγ and TLR4 in steatotic liver transplantation. Am J Transpl. 2012;12:3257–71.

    CAS  Google Scholar 

  48. Alfany-Fernandez I, Casillas-Ramirez A, Bintanel-Morcillo M, Brosnihan KB, Ferrario CM, Serafin A, et al. Therapeutic targets in liver transplantation: angiotensin II in nonsteatotic grafts and angiotensin-(1–7) in steatotic grafts. Am J Transplt. 2009;9:439–51.

    CAS  Google Scholar 

  49. Ellett JD, Evans ZP, Atkinson C, Schmidt MG, Schnellmann RG, Chavin KD. Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transpl. 2009;15:1101–9.

    PubMed Central  PubMed  Google Scholar 

  50. Firorini RN, Shafizadeh SF, Polito C, Rodwell DW, Cheng G, Evans Z, et al. Anti-endotoxin monoclonal antibodies are protective against hepatic ischemia/reperfusion injury in steatotic mice. Am J Transpl. 2004;4:1567–73.

    Google Scholar 

  51. Zaouali MA, Bardag-Gorce FB, Carbonell T, Oliva J, Pantazi E, Bejaoui M, et al. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Exp Mol Path. 2013;94:352–9.

    Google Scholar 

  52. He S, Atkinson C, Evans Z, Ellett JD, Southwood M, Elvington A, et al. A role for compliment in the enhanced susceptibility of steatotic livers to ischemia and reperfusion injury. J Immunol. 2009;183:4764–72.

    CAS  PubMed  Google Scholar 

  53. Selzner N, Selzner M, Jochum W, Clavian PA. Ischemic preconditioning protects the steatotic mouse liver against reperfusion injury: an ATP dependent mechanism. J Hepatology. 2003;39:55–61.

    CAS  Google Scholar 

  54. Rolo AP, Teodoro JS, Peralta C, Rosello-catafau JR, Palmeira CM. Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: the key role of ATP synthase and mitochondrial permeability transition. Transpl Int. 2009;22:1081–90.

    CAS  PubMed  Google Scholar 

  55. Serafin A, Rosello-Catafau J, Prats N, Xaus C, Gelpi E, Peralta C. Ischemic preconditioning increases the tolerance of fatty liver to hepatic ischemia–reperfusion injury in the rat. Am J Pathol. 2002;161:587–601.

    PubMed Central  PubMed  Google Scholar 

  56. Yamagami K, Yamamoto Y, Kume M, Kimoto S, Yamamoto H, Ozaki N, et al. Heat shock preconditioning ameliorates liver injury following normothermic ischemia–reperfusion in steatotic rat livers. J Surg Res. 1998;79:47–53.

    CAS  PubMed  Google Scholar 

  57. Massip-Salcedo M, Casillas-Ramirez A, Franco-Gou R, Ben Mosban I, Serafin A, et al. Heat shock proteins and mitogen-activated protein kinases in steatotic livers undergoing ischemia–reperfusion: some answers. Am J Pathol. 2006;168:1474–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bouma HR, Ketelaar ME, Yard BA, Pleoeg RJ, Henning RH. AMP-activated protein kinase as a target for preconditioning in transplantation medicine. Transplantation. 2010;90:353–8.

    CAS  PubMed  Google Scholar 

  59. Carrasco-Chaumel E, Rosello-Catafau J, Bartrons R, Franco-Gou R, Xaus C, Casillas A, et al. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. J Hepatol. 2005;43:997–1006.

    CAS  PubMed  Google Scholar 

  60. Serafin A, Rosello-Catafau J, Prats N, Gelpi E, Rodes J, Peralta C. Ischemic preconditioning affects interleukin release in fatty livers of rats undergoing ischemia/reperfusion. Hepatology. 2004;39:688–98.

    CAS  PubMed  Google Scholar 

  61. Tacchini L, Cario G, De Ponti C, Massip M, Rosello-Catafau J, Peralta C. Up regulation of IL-6 by ischemic preconditioning in normal and fatty rat livers: association with reduction of oxidative stress. Free Radic Res. 2006;40:1206–17.

    CAS  PubMed  Google Scholar 

  62. Sun Z, Klein AS, Radaeva S, Hong F, EL-Assal O, Pan HN, et al. In vitro interleukin-6 treatment prevents mortality associated with fatty liver transplants in rats. Gastroenterology. 2003;125:202–15.

    CAS  PubMed  Google Scholar 

  63. Hong F, Radaeva S, Pan HN, Tian Z, Veech R, Gao B. Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver disease. Hepatology. 2004;40:933–41.

    CAS  PubMed  Google Scholar 

  64. Fernandez L, Carrasco-Chaumel E, Serafin A, Xaus C, Grande L, Rimola A, et al. Is ischemic preconditioning a useful strategy in steatotic liver transplantation? Am J Transpl. 2004;4:888–99.

    CAS  Google Scholar 

  65. Bessems M, Doorschodt BM, Kolkert JLP, Vetelainen RL, Van Vliet AK, Vreeling H, et al. Preservation of steatotic livers: a comparison between cold storage and machine perfusion preservation. Liver Transpl. 2007;13:497–504.

    PubMed  Google Scholar 

  66. Vairetti M, Ferrigno A, Carlucci F, Tabucchi A, Rizzo V, Boncompagni E, et al. Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase? Liver Transpl. 2009;15:20–9.

    PubMed  Google Scholar 

  67. Jamieson RW, Zilvetti M, Roy D, Hughes D, Morovat A, Coussions CC, et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation. 2011;92:289–95.

    PubMed  Google Scholar 

  68. Minor T, Akbar S, Tolba R, Domobrowski F. Cold preservation of fatty liver grafts: prevent of functional and ultrastructual impairments by venous oxygen persufflation. J Hepatol. 2000;32:105–11.

    CAS  PubMed  Google Scholar 

  69. Minor T, Stegemann J, Hirner A, Koetting M. Impaired autophagic clearance after cold preservation of fatty livers correlates with tissue necrosis upon reperfusion and is reversed by hypothermic reconditioning. Liver Transpl. 2009;15:798–805.

    PubMed  Google Scholar 

  70. Koetting M, Luer B, Efferz P, Paul A, Minor T. Optimal time for hypothermic reconditioning of liver grafts by venous systemic oxygen persufflation in a large animal model. Transplantation. 2011;91:42–7.

    PubMed  Google Scholar 

  71. Minor T, Koetting M, Koetting M, Kaiser G, Efferz P, Luer B, et al. Hypothermic reconditioning by gaseous oxygen improves survival after liver transplantation in the pig. Am J Transpl. 2011;11:2627–34.

    CAS  Google Scholar 

  72. Srinivasan PK, Yagi S, Doorschodt B, Nagai K, Afify M, Uemoto S, et al. Impact of venous systemic oxygen persufflation supplemented with nitric oxide gas on cold-stored, warm ischemia-damaged experimental liver grafts. Liver Transpl. 2012;18:219–25.

    PubMed  Google Scholar 

  73. Nagai K, Yagi S, Afify M, Bleilevens C, Uemoto S, Tolba RH. Impact of venous-systemic oxygen persufflation with nitric oxide gas on steatotic grafts after partial orthotopic liver transplantation in rats. Transplantation. 2013;95:78–84.

    CAS  PubMed  Google Scholar 

  74. Seifalian AM, Chidambaram V, Rolles K, Davidson BR. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl Surg. 1998;4:71–7.

    CAS  PubMed  Google Scholar 

  75. Ijaz S, Yang W, Winslet MC, Seifalian AM. Impairment of hepatic microcirculation in fatty liver. Microcirculation. 2003;10:447–56.

    CAS  PubMed  Google Scholar 

  76. Yamagami K, Enders G, Schauer RJ, Leiderer R, Hutter J, Yamamoto Y, et al. Heat-schock preconditioning protects fatty livers in genetically obese zucker rats from microvascular perfusion failure after ischemia reperfusion. Transpl Int. 2003;16:554–61.

    Google Scholar 

  77. El-Badry AM, Moritz W, Contaldo C, Tian Y, Graf R, Clavien PA. Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids. Hepatology. 2007;45:855–63.

    CAS  PubMed  Google Scholar 

  78. El-Badry AM, Jang JH, Elsherbiny A, Contaldo C, Tian Y, Raptis DA, et al. Chemical composition of hepatic lipids mediates reperfusion injury of the macrosteatotic mouse liver through thromboxane A2. J Hepatol. 2011;55:1291–9.

    CAS  PubMed  Google Scholar 

  79. Zhang JX, Bauer M, Clemens MG. Vessel- and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver. Am J Physiol. 1995;269:G269–77.

    CAS  PubMed  Google Scholar 

  80. Mizunuma K, Ohdan H, Tashiro H, Fudaba Y, Ito H, Asahara T. Prevention of ischemia–reperfusion-induced hepatic microcirculatory disruption by inhibiting stellate cell contraction using rock inhibitor. Transplantation. 2003;75:579–86.

    CAS  PubMed  Google Scholar 

  81. Ikeda F, Terajima H, Shimamura Y, Kondo T, Yamaoka Y. Reduction of hepatic ischemia/reperfusion-induced injury by a specific rock/rho kinase inhibitor y-27632. J Surg Res. 2003;109:155–60.

    CAS  PubMed  Google Scholar 

  82. Kuroda S, Tashiro H, Igarashi Y, Tanimoto Y, Nambu J, Oshita A, et al. Rho inhibitor prevents ischemia–reperfusion injury in rat steatotic liver. J Hepatol. 2012;56:146–52.

    CAS  PubMed  Google Scholar 

  83. Fondevila C, Shen XD, Duarte S, Busuttil RW, Coito AJ. Cytoprotective effects of acyclic RGD peptide in steatotic liver cold ischemia and reperfusion injury. Am J Transpl. 2009;9:2240–50.

    CAS  Google Scholar 

  84. Hasegawa T, Ito Y, Wijeweera J, Liu J, Malle E, Farhood A, et al. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia–reperfusion injury in steatotic livers of ob/ob mice. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1385–95.

    CAS  PubMed  Google Scholar 

  85. Yamagami K, Hutter J, Yamamoto Y, Schauer RJ, Enders G, Leiderer R, et al. Synergistic effects of brain death and liver steatosis on the hepatic microcirculation. Transplantation. 2005;80:500–5.

    PubMed  Google Scholar 

  86. Wakai T, Shirai Y, Sakata J, Korita PV, Ajioka Y, Tatakeyama K. Surgical outcomes for hepatocellular carcinoma in nonalcoholic fatty liver disease. J Gastrointest Surg. 2011;15:1450–8.

    PubMed  Google Scholar 

  87. Reddy SK, Marsh W, Varley PR, Mock BK, Chopra KB, Geller DA, et al. Underlying steatohepatitis, but not simple hepatic steatosis, increase morbidity after liver resection: case–control study. Hepatology. 2012;56:2221–30.

    PubMed  Google Scholar 

  88. Jamagin WR, Gonen M, Fong Y, DeMatteo R, Ben-Porat L, Little S, et al. Improvement in perioperative outcome after hepatic resection. Ann Surg. 2002;236:397–407.

    Google Scholar 

  89. Cho JY, Suh KS, Kwon CH, Yi NJ, Lee KU. Mild hepatic steatosis is not a major risk factor for hepatectomy and regenerative power is not impaired. Surgery. 2006;139:508–15.

    PubMed  Google Scholar 

  90. Nagai S, Fujimoto Y, Kamei H, Nakamura T, Kiuchi T. Mild hepatic marovesicular steatosis may be a risk factor for hyperbilurubinemia in living liver donors following right hepatectomy. Br J Surg. 2009;96:437–44.

    CAS  PubMed  Google Scholar 

  91. Behrns K, Tsiotos G, DeSouza NF, Krishna MK, Ludwig F, Nagorney DM. Hepatic steatosis as a potential risk for major hepatic surgery. J Gastrointest Surg. 1998;2:292–8.

    CAS  PubMed  Google Scholar 

  92. de Meijer VE, Kalish BT, Puder M, Ijzermans JNM. Systemic review and meta-analysis of a steatosis as a risk factor in major hepatic resection. Br J Surg. 2010;97:1131–339.

    Google Scholar 

  93. McCormack L, Dutkowski P, El-Badry AM, Clavien PA. Liver transplantation using fatty livers: always feasible? J Hepatol. 2011;54:1055–62.

    PubMed  Google Scholar 

  94. Doyle MBM, Vachharajani N, Wellen JR, Anderson CD, Lowell JA, Shenoy S, et al. Short-and long-term outcomes after steatotic liver transplantation. Arch Surg. 2010;145:653–60.

    PubMed  Google Scholar 

  95. McCormack L, Petrowsky H, Jochum W, Mullhaupt B, Weber M, Clavien PA. Use of severely steatotic grafts in liver transplantation: a matched case-control study. Ann Surg. 2007;246:940–8.

    PubMed  Google Scholar 

  96. Spitzer AL, Lao OB, Dick AAS, Bakthavatsalam R, Halldorson JB, Yeh MM, et al. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl. 2010;16:874–84.

    PubMed  Google Scholar 

  97. Soejima Y, Shimada M, Suehiro T, Kishikawa K, Yoshimizu T, Hashimoto K, et al. Use of steatotic graft in living-donor liver transplantation. Transplantation. 2003;76:344–8.

    PubMed  Google Scholar 

  98. Hayashi M, Fujii T, Kiuchi T, Uryuhara K, Kasahara M, Takatsuki M, et al. Effects of fatty filtration of the graft on the outcome of living-related liver transplantation. Transplant Proc. 1999;31:403.

    CAS  PubMed  Google Scholar 

  99. Yoong KF, Gunson BK, Neil DAH, Mirza DF, Mayer AD, Buckels JA, et al. Impact of donor liver microvesicular steatosis on the outcome of liver transplantation. Transpl Proc. 1999;31:550–1.

    CAS  Google Scholar 

  100. Cho JY, Suh KS, Lee HW, Cho EH, Yang SH, Cho YB, et al. Hepatic steatosis is associated with intrahepatic cholestasis and transient hyperbilirubinemia during regeneration after living donor liver transplantation. Transpl Int. 2006;19:807–13.

    PubMed  Google Scholar 

  101. Oshita A, Tashiro H, Amano H, Kobayashi T, Onoe T, Ide K, et al. Safety and feasibility of diet-treated donors with steatotic livers at the initial consultation for living-donor liver transplantation. Transplantation. 2012;93:1024–30.

    CAS  PubMed  Google Scholar 

  102. Nakamuta M, Morizono S, Soejima Y, Yoshizumi T, Aishima S, Takaugi S, et al. Short-term intensive treatment for donors with hepatic steatosis in living-donor liver transplantation. Transplantation. 2005;80:608–12.

    CAS  PubMed  Google Scholar 

  103. Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg. 2003;238:843–52.

    PubMed Central  PubMed  Google Scholar 

  104. Domart MC, Esposti DD, Sebagh M, Olaya N, Harper F, Pierron G, et al. Concurrent induction of necrosis, apoptosis, and autophagy in ischemic preconditioned human livers formerly treated by chemotherapy. J Hepatol. 2009;51:881–9.

    PubMed  Google Scholar 

  105. Scatton O, Zalinski Z, Jegou D, Compagnon P, Lesurtel M, Belghiti J, et al. Randomized clinical trial ischaemic preconditioning in major liver resection with intermittent pringle manoeuvre. Br J Surg. 2011;98:1236–43.

    CAS  PubMed  Google Scholar 

  106. Beck-Schimmer B, Breitenstein S, Urech S, De Conno E, Wittlinger M, Puhan M, et al. A randomized controlled trial on pharmacological preconditioning in liver surgery using volatile anesthetic. Ann Surg. 2008;248:909–18.

    PubMed  Google Scholar 

  107. Azoulay D, del Gaudio M, Andreani P, Ichai P, Sebag M, Adam R, et al. Effects of 10 minutes of ischemic preconditioning of cadaveric liver on the grafts preservation and function: the ying and the yang. Ann Surg. 2005;242:133–9.

    PubMed Central  PubMed  Google Scholar 

  108. Amador A, Grande L, Marti J, Deulofeu R, Miquel R, Sola A, et al. Ischemic pre-conditioning in deceased donor liver transplantation: a prospective randomized clinical trial. Am J Transpl. 2007;7(9):2180–9.

    CAS  Google Scholar 

  109. Jassem W, Fuggle S, Thompson R, Arno M, Taylor J, Byrne J, et al. Effect of ischemic preconditioning on the genomic response to reperfusion injury in deceased donor liver transplantation. Liver Transpl. 2009;15:1750–65.

    PubMed  Google Scholar 

  110. Koneru B, Shareef A, Dikdan G, Desai K, Klein KM, Peng B, et al. The ischemic preconditioning paradox in deceased donor liver transplantation—evidence from a prospective randomized single blind clinical trial. Am J Transpl. 2007;7:2788–96.

    CAS  Google Scholar 

  111. Guarrera JV, Henry SD, Samstein B, Odeh-Ramadan R, Kinkhabwala M, Goldstein MJ, et al. Hypothermic machine preservation in human liver transplantation. Am J Transpl. 2009;10:372–81.

    Google Scholar 

  112. Henry SD, Nachber E, Tulipan J, Stone J, Bae C, Reznik L, et al. Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am J Transpl. 2012;12:2477–86.

    CAS  Google Scholar 

  113. Op den Dries S, Karimian N, Sutton ME, Westerkamp AC, Nijsten MWN, Gouw ASH, et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transpl. 2013;13:1327–35.

    Google Scholar 

  114. Treckmann J, Minor T, Saad S, Ozcelik A, Malago M, Broelsh CE, et al. Retrograde oxygen persuflation preservation of human livers: a pilot study. Liver Transpl. 2008;14:358–64.

    PubMed  Google Scholar 

  115. Minor T, Putter C, Gallinat A, Ose C, Kaiser G, Scherag A, et al. Oxygen persufflation as adunct in liver preservation (OPAL): study protocol for a randomized controlled trial. Trials. 2011;12:234.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Tashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashiro, H., Kuroda, S., Mikuriya, Y. et al. Ischemia–reperfusion injury in patients with fatty liver and the clinical impact of steatotic liver on hepatic surgery. Surg Today 44, 1611–1625 (2014). https://doi.org/10.1007/s00595-013-0736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-013-0736-9

Keywords

Navigation