The Role of Arbuscular Mycorrhizal Fungal Community in Paddy Soil

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

  • 739 Accesses

Abstract

The exchange of carbohydrates and mineral nutrients in the arbuscular mycorrhizal (AM) symbiosis must be controlled by both partners in order to sustain an evolutionarily stable mutualism. Plants downregulate their carbon (C) flow to the fungus when nutrient levels are sufficient, while the mechanism controlling fungal nutrient transfer is unknown. Here, we show that the fungus accumulates nutrients when connected to a host that is of less benefit to the fungus, indicating a potential of the fungus to control the transfer of nutrients. We used a monoxenic in vitro model of root organ cultures associated with Glomus intraradices, in which we manipulated the C availability to the plant. We found that G. intraradices accumulated up to seven times more nutrients in its spores, and up to nine times more in its hyphae, when the C pool available to the associated roots was halved. The strongest effect was found for phosphorus (P), considered to be the most important nutrient in the AM symbiosis. Other elements such as potassium and chorine were also accumulated, but to a lesser extent, while no accumulation of iron or manganese was found. Our results suggest a functional linkage between C and P exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggangan NS, Dell B, Malajczuk N (1998) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake. Geoderma 84:15–27

    CAS  Google Scholar 

  • Alexander IJ (1989) Mycorrhizas in tropical forests. In: J. Proctor (Ed.), Mineral nutrients in tropical forest and savannah ecosystems. Blackwell, Oxford. Pp. 169–188

    Google Scholar 

  • Anonymous (2019). https://www.britannica.com/topic/paddy

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao X, Wanga Y, Olsson PA (2019) Arbuscular mycorrhiza under water—carbon–phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biol Biochem 129:169–177

    CAS  Google Scholar 

  • Barbour MG, Burk JH, Pitts WD (1980) Terrestrial plant ecology. Benjamin/Cummings Publishing Company, Menlo Park

    Google Scholar 

  • Bernaola L, Cange G, Way MO, Gore J, Gore J, Stout MJ (2018) Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas. Rice Sci 25:169–174

    Google Scholar 

  • Bravin MN, Travassac F, Floch ML, Hinsinger P, Granier JM (2008) Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): amicrocosmstudy. Plant Soil 312:207–218

    CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and develo** reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    PubMed  Google Scholar 

  • Bucking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912

    PubMed  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1–14

    Google Scholar 

  • Dolinar N, Gaberščik A (2010) Mycorrhizal colonization and growth of Phragmites australis in anintermittent wetland. Aquat Bot 93:93–98

    Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Application of in vitro methods to study carbon uptake and transport by AM fungi. Plant Soil 226:255–261

    Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    CAS  Google Scholar 

  • FAO (2004) International year of rice. http://www.fao.org/rice2004/en/rice4.htm

  • Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P (2015) Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front Plant Sci 6:1–17

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Greipsson S (1995) Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. J Plant Nutr 18:1659–1665

    CAS  Google Scholar 

  • Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, Carbonnel S, Mansfield C, Yang SY, Nadal M (2015a) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–1524

    CAS  PubMed  Google Scholar 

  • Gutjahr C et al (2015b) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–1524

    CAS  PubMed  Google Scholar 

  • Guttenberger M (2000) Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211:299–304

    CAS  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009) Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agric Slov 93(2):153

    Google Scholar 

  • Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244

    CAS  PubMed  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil. Plant Soil 110:77–80

    Google Scholar 

  • Harrison MJ, Van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Gomus versiforme. Nature 378:626–629

    Google Scholar 

  • Hattori R, Matsumura A, Yamawaki K, Tarui A, Daimon H (2013) Effects of flooding on arbuscular mycorrhizal colonization and root-nodule formation in different roots of soybeans. Agri Sci 4:673–677

    Google Scholar 

  • Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186:285–289

    CAS  PubMed  Google Scholar 

  • Hoseinzade H, Ardakani MR, Shahdi A, Asadi Rahmani H, Noormohammadi G, Miransari M (2016) Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. J Integr Agric 15:1385–1394

    Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    CAS  PubMed  Google Scholar 

  • Ilag LL, Rosales AM, Elazegui FA, Mew TW (1987) Changes in the population of infective endomycorrhizal fungi in a rice-based crop** system. Plant Soil 103:67–73

    Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YN, Wang WX, **e QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    CAS  PubMed  Google Scholar 

  • Khan A (2004) Mycotrophy and its significance in wetland ecology and wetland management. In: Wong MH (ed) Wetlands ecosystems in Asia: function and management. Elsevier, Amsterdam

    Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agri For 31:355–362

    CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Zh S, Frenzel FP, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Google Scholar 

  • Kosaka Y, Takeda S, Sithirajvongsa S, Xaydala K (2006) Plant diversity in paddy fields in relation to agricultural. Econ Bot 60:49–61

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kra**ski F, Courty PE, Sieh D, Franken P, Zhang HQ, Bucher M et al (2014) The HC-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26:1808–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    Google Scholar 

  • Lakshmipathy R, Balakrishna AN, Bagyaraj DJ (2012) Abundance and diversity of AM fungi across a gradient of land use intensity and their seasonal variations in Niligiri biosphere of the Western Ghats, India. J Agr Sci Tech 14:903–918

    Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    CAS  PubMed  Google Scholar 

  • Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units – adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345

    CAS  PubMed  Google Scholar 

  • Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103(5):1224–1232

    Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late–planted soybean. Crop Sci 38:1579–1584

    Google Scholar 

  • Liu WJ, Zhu YG, Smith FA (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  PubMed  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GE, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 6:763–775

    Google Scholar 

  • Lui H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil. Sci Total Environ 394:361–368

    Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Google Scholar 

  • Maekawa T, Shimamura S, Shimada S (2011) Effects of short-term waterlogging on soybean nodule nitrogen fixation at different soil reductions and temperatures. Plant Proc Sci 14:49–358

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    PubMed  Google Scholar 

  • Mejstrik V (1965) Study on the development of endotrophic mycorrhiza in the association of Cladietum marisci. In: Macura J, Vancura V (eds) Plant microbe relationships. Czechoslovak Academy of Sciences, Prague, pp 283–290

    Google Scholar 

  • Miao S, Shi H, Jian J, Judong L, **aobing L, Guanghua W (2012) Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture. J Food Agric Environ 10:819–824

    Google Scholar 

  • Milly PCD, Wetherald RT, Dunne K, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517

    CAS  PubMed  Google Scholar 

  • Mitra S, Wassmann R, Vlek PL (2005) An appraisal of global wetland area and itsorganic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    PubMed  Google Scholar 

  • Nakagawa T, Imaizumi-Anraku H (2015) Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice 8:1–9

    Google Scholar 

  • Nielsen KB, Kjoller R, Schweiger PF, Andersen FO, Rosendahl S (2004) Colonization and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycol Res 6:616–625

    Google Scholar 

  • Nishigaki T, Tsujimoto Y, Rinasoa S, Rakotoson T, Andriamananjara A, Razafimbelo T (2019) Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant Soil, 435(1–2):27–38

    Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for co** with submergence and waterlogging in rice. Rice 5:1–14

    Google Scholar 

  • Oehl F, Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Okonji RE, ALadesanmi OT, Kuku A, Agboola FK (2008) Isolation and some properties of pattially purified Rhodanese from the hepatopancreas of giant freshwater prawn (Macrobrachium rosenbergii De Man). Ife J Sci 10:255–262

    Google Scholar 

  • Palenzuela J, Ferrol N, Boller T, Azcón-Aguilar C, Oehl F (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub-land in the National Park of Sierra de Baza (Granada, Spain). Mycologia 100:282–291

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99(20):13324–13329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajeshkannan V, Sumathi Ch S, Manian S (2009) China National Rice Research Institute. Arbuscular mycorrhizal fungi colonization in upland rice as influenced by agrochemical application. Rice Sci 16:307–313

    Google Scholar 

  • Rausch C, Daram P, Brunner S et al (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    CAS  PubMed  Google Scholar 

  • Ray AM, Inouye RS (2006) Effects of water-level fluctuations on the arbuscular mycorrhizal colonization of Typha latifolia L. Aquat Bot 84:210–216

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Sanni SO (1976) Vesicular-arbuscular mycorrhiza in some Nigerian soils: the effect of Gigaspora gigantea on the growth of rice. New Phytol 77:673–674

    Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015–4023

    CAS  PubMed  Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:69–81

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. (3rdedn) Academic Press, San Diego, CA.

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis, 3rd edn. London, Academic

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    CAS  PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, JWG C (1994) Nutrient transport in mycorrhizas – structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113

    CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41:505–514

    Google Scholar 

  • Sondergaard M, Laegaard S (1977) Vesicular–arbuscular mycorrhiza in some aquatic vascular plants. Nature 268:232–233

    Google Scholar 

  • Stevens KJ, Wall CB, Janssen JA (2011) Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L, and Eclipta prostrata (L) L, grown under three levels of water availability. Mycorrhiza 21:279–288

    PubMed  Google Scholar 

  • Suzuki S, Kobae Y, Sisaphaithong T, Tomioka R, Takenaka C et al (2015) Differential growth responses of rice cultivars to an arbuscular mycorrhizal fungus, Funneliformis mosseae. J Hortic 2:142

    Google Scholar 

  • Taylor JD, Helgason T, Öpik M (2017) Molecular community ecology of arbuscular mycorrhizal fungi. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press, Boca Raton, pp 1–26

    Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    CAS  PubMed  Google Scholar 

  • Tommerup IC, Sivasithamparam K (1990) Zygospores and asexual spores of Gigaspora decipiens: an arbuscular mycorrhizal fungus. Mycol Res 94:897–900

    Google Scholar 

  • Treseder KK (2016) Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94:417–423

    CAS  Google Scholar 

  • Trolldenier G (1988) Visualisation of oxidising power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzenernaehr Bodenkd 151:117–121

    CAS  Google Scholar 

  • Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E (2009) Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Annu Appl Biol 154:195–204

    Google Scholar 

  • Vallino M, Fiorilli V, Bonfante P (2014) Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ 37:557–572

    CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Google Scholar 

  • Wang YT, Björn LO (2014) Heavy metal pollution in Guangdong province, China, and the strategies to manage the situation. Front Environ Sci 2:1–12

    Google Scholar 

  • Wang YT, Qiu Q, Yang ZY, Hu ZJ, Tam NFY, **n GR (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    CAS  Google Scholar 

  • Wang YT, Huang YL, Qiu Q, **n GR, Yang ZY, Shi SH (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi (AMF) communities in the roots of wetland plants. PLoS One 6:e24512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yao H, Wong MH, Ye Z (2013) Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environ Geochem Health 35:779–788

    Google Scholar 

  • Wang YT, Li T, Li YW, Qiu Q, Li SS, **n GR (2014) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65:603–610

    Google Scholar 

  • Wang Y, Li T, Li Y, Bjorn LO, Rosendahl S, Olsson PA, Li S, Fud X (2015) Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems. Appl Environ Microbiol 81:2958–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li Y, Bao X, Björn LO, Sh L, Olsson PA (2016) Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes. Plant Soil 403:361–373

    CAS  Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Peter J, Young W, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microb Environ 28:316–324

    Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1546

    PubMed  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C et al (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501

    CAS  PubMed  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. vol 3: Perspective for sustainable environments, Springer, Cham

    Google Scholar 

  • Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the Phosphate Transporter1 gene family. The Plant Cell 24:4236–4251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yimyam NS, Youpensuk J, Wongmo A, Kongpan B, Rerkasem K, Rerkasem B (2008) Arbuscular mycorrhizal fungi - An underground resource for sustainable upland agriculture. Biodivers Agric 9:61–63

    Google Scholar 

  • Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077

    CAS  Google Scholar 

  • Zhang Q, Sun QX, Koide RT, Peng ZH, Zhou JX, Gu XG, Gao WD, Yu M (2014) Arbuscular mycorrhizal fungal mediation of plant-plant interactions in a marshland plant community. Scientific World J 2014:923610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Bagheri Novair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novair, S.B., Hosseini, H.M.S., Etesami, H., Razavipour, T., Pirmoradian, N. (2020). The Role of Arbuscular Mycorrhizal Fungal Community in Paddy Soil. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_3

Download citation

Publish with us

Policies and ethics

Navigation