Log in

Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Unconfined compressive strength (UCS) is a major mechanical parameter of the rock which has an essential role in develo** geomechanical models. It can be estimated directly by lab testing of retrieved core samples or from well log data. These methods are very expensive and require huge efforts and time. Therefore, there is a need to develop a new technique for predicting UCS values in real-time. In this study, three artificial intelligence (AI) models were developed using artificial intelligence tools; artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) to predict UCS of the downhole formations while drilling based on real-time recording of the drilling mechanical parameters. These parameters include rate of penetration (ROP), mud pum** rate (GPM), stand-pipe pressure (SPP), rotary speed in revolution per minute (RPM), torque (T), and weight on bit (WOB). A dataset of 1771 points from a Middle Eastern field was used to build the developed models: for training and testing processes. A new UCS correlation was developed based on the optimized AI model. Another set of data (2175 data points unseen by the model) was used to validate the model and the developed UCS correlation. The developed ANN-model outperformed the ANFIS- and SVM-models with a correlation coefficient (R-value) of 0.99 and an average absolute percentage error (AAPE) of 3.48% between the predicted and actual UCS values. The new UCS correlation outperformed the available correlations for UCS prediction and it was able to predict the UCS with AAPE of 4.2% compared to the actual UCS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAPE:

Average absolute percentage error

AI:

Artificial Intelligence

ANN:

Artificial neural network

ANFIS:

Adaptive network-based fuzzy interference system

SVM:

Support vector machine

R:

Correlation coefficient

R2 :

Coefficient of determination

ROP:

Rate of penetration

WOB:

Weight on bit

RPM:

Rotating speed in revolution per minute

GPM:

Gallon per minute

SPP:

Standpipe pressure

T:

Torque

Fitnet Function:

Fitting neural network

Newdtdnn:

Create distributed time delay neural network

newnarx:

Create feedforward backpropagation network with feedback from output to input

newelm:

Create Elman backpropagation network

newfftd:

Create feedforward input-delay backpropagation network

newff:

Create feedforward backpropagation network

newlrn:

Layer-Recurrent Network

tansig:

Hyperbolic tangent sigmoid transfer function

logsig:

Log-sigmoid transfer function

hardlims:

Hard-limit transfer function

trainbr:

Bayesian regularization

purelin:

Linear transfer function

softmax:

Softmax transfer function

tribas:

Triangular basis transfer function

trainlm:

Levenberg–Marquardt backpropagation

trainbfg:

BFGS quasi-Newton backpropagation

traingdx:

Gradient descent with momentum and adaptive learning rule backpropagation

trainoss:

One step secant backpropagation

References

  1. Chau KT, Wong RHC (1996) Uniaxial compressive strength and point load strength of rocks. Int J Rock Mech Min Sci Geomech Abstracts 33(2):183–188. https://doi.org/10.1016/0148-9062(95)00056-9

    Article  Google Scholar 

  2. Fjar E, Holt RM, Raaen AM, Horsrud P (2008) Petroleum related rock mechanics. Elsevier, Amsterdam

    Google Scholar 

  3. Shi X, Meng Y, Li G, Li J, Tao Z, Wei S (2015) Confined compressive strength model of rock for drilling optimization. Petroleum 1(1):40–45.

    Article  Google Scholar 

  4. Liu H (2017) Rock mechanics. In: Principles and applications of well logging. Springer, Berlin, Heidelberg. pp. 237–269. https://doi.org/10.1007/978-3-662-54977-3

  5. Abdulraheem A, Ahmed M, Vantala A, Parvez T (2009) Prediction of rock mechanical parameters for hydrocarbon reservoirs using different artificial intelligence techniques. In: SPE Saudi Arabia section technical symposium. Society of Petroleum Engineers., https://doi.org/10.2118/126094-MS

  6. Militzer H, Stoll R (1973) Einige Beitrageder geophysics zur primadatenerfassung im Bergbau. Neue Bergbautechnik, pp 21–25

  7. Golubev AA, Rabinovich G (1976) Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Prikl. Geofiz. Moskva 73:109–116

    Google Scholar 

  8. Chang C (2004) Empirical rock strength logging in boreholes penetrating sedimentary formations. J. Eng. Geol. 7(3):174–183

    Google Scholar 

  9. Mostofi M, Rahimzadeh H, Shahbazi K (2011) The development of a new sonic correlation for UCS estimation from drilling data. Pet Sci Technol 29(7):728–734. https://doi.org/10.1080/10916460903452025

    Article  Google Scholar 

  10. Nabaei M, Shahbazi K (2012) A new approach for predrilling the unconfined rock compressive strength prediction. Pet Sci Technol 30(4):350–359. https://doi.org/10.1080/10916461003752546

    Article  Google Scholar 

  11. Amani A, Shahbazi K (2013) Prediction of rock strength using drilling data and sonic logs. Int J Comput Appl 81(2):5–10. https://doi.org/10.5120/13982-1986

    Article  Google Scholar 

  12. Asadi A (2017) Application of artificial neural networks in prediction of uniaxial compressive strength of rocks using well logs and drilling data. Proc Eng 191:279–286

    Article  Google Scholar 

  13. Tariq Z, Abdulraheem A, Mahmoud M, Elkatatny S, Ali AZ, Al-Shehri D, Belayneh MW (2019) A new look into the prediction of static Young’s modulus and unconfined compressive strength of carbonate using artificial intelligence tools. Pet Geosci 25(4):389–399

    Article  Google Scholar 

  14. Hassanvand M, Moradi S, Fattahi M, Zargar G, Kamari M (2018) Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: Modeling vs artificial neural network application. Pet Res 3(4):336–345. https://doi.org/10.1016/j.ptlrs.2018.08.004

    Article  Google Scholar 

  15. Amani A, Shahbazi K (2013) Prediction of rock strength using drilling data and sonic logs. Int J Comput Appl 81(2):7–10

    Google Scholar 

  16. Jackson CE, Heysse DR (1994) Improving formation evaluation by resolving differences between lwd and wireline log data. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  17. Dawson R (2011) How significant is a boxplot outlier? J Stat Educ 19

  18. Zhou H, Deng Z, **a Y, Fu M (2016) A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing 216:208–215. https://doi.org/10.1016/j.neucom.2016.07.036

    Article  Google Scholar 

  19. Tariq Z, Elkatatny S, Mahmoud M, Ali AZ, Abdulraheem A (2017) A new technique to develop rock strength correlation using artificial intelligence tools. In SPE reservoir characterization and simulation conference and exhibition; Society of Petroleum Engineers: Calgary, AB, Canada. https://doi.org/10.2118/186062-MS

  20. Elkatatny S, Tariq Z, Mahmoud M, Abdulraheem A, Mohamed I (2018) An integrated approach for estimating static Young’s modulus using artificial intelligence tools. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3344-1

    Article  Google Scholar 

  21. Gowida A, Moussa T, Elkatatny S, Ali A (2019) A hybrid artificial intelligence model to predict the elastic behavior of sandstone rocks. Sustainability 11(19):5283

    Article  Google Scholar 

  22. Anifowose FA, Labadin J, Abdulraheem A (2017) Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization. J PetSci Eng 151:480–487. https://doi.org/10.3390/su11195283

    Article  Google Scholar 

  23. Jamshidi E, Arabjamaloei R, Hashemi A, Ekramzadeh MA, Amani M (2013) Real-time Estimation of Elastic Properties of Formation Rocks Based on Drilling Data by Using an Artificial Neural Network. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35(4):337–351

    Article  Google Scholar 

  24. Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin SJEG (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158

    Article  Google Scholar 

  25. Cevik A, Sezer EA, Cabalar AF, Gokceoglu C (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 11:2587–2594. https://doi.org/10.1016/j.asoc.2010.10.008

    Article  Google Scholar 

  26. Lippman RP, Lippman RP (1987) An intrduction to computing with neural nets. In: Mag A (ed.) IEEE ASSP Magazine. IEEE. pp. 4–22, https://doi.org/10.1109/MASSP.1987.1165576

  27. Hinton GE, Osindero S, Teh Y-W (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Comput 18:1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  28. Graves A, Liwicki M, Fernandez S, Bertolami R, Bunke H, Schmidhuber J (2009) A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Trans Pattern Anal Mach Intell 31:855–868. https://doi.org/10.1109/TPAMI.2008.137

    Article  Google Scholar 

  29. Nakamoto P (2017) Neural Networks and Deep Learning: Deep Learning Explained to Your Granny a Visual Introduction for Beginners Who Want to Make Their Own Deep Learning Neural Network (Machine Learning); CreateSpace Independent Publishing Platform: Scotts Valley. CA, USA

    Google Scholar 

  30. Jang JS, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  31. Wang T, Ma M, Jianbin Q, Gao H (2020) Event-triggered adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with multiple constraints. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TSMC.2020.3013744

  32. Qiu J, Ma M, Wang T (2020) Event-triggered adaptive fuzzy fault-tolerant control for stochastic nonlinear systems via command filtering. IEEE Trans Syst Man Cybern Syst 2:1493–1499. https://doi.org/10.1109/FUZZY.1996.552396

    Article  Google Scholar 

  33. Jang JS (1996) Input selection for ANFIS learning. In: Proceedings of IEEE 5th international fuzzy systems (Vol. 2, pp. 1493—1499). https://doi.org/10.1109/fuzzy.1996.552396

  34. Aghli Ghasem, Moussavi-Harami Reza, Mortazavi Saiedollah, Mohammadian Roohangiz (2019) Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs. J Petrol Sci Eng 172:1092–1102

    Article  Google Scholar 

  35. Gowida A, Elkatatny S, Al-Afnan S, Abdulraheem A (2020) New computational artificial intelligence models for generating synthetic formation bulk density logs while drilling. Sustainability 12(2):686. https://doi.org/10.3390/su12020686

    Article  Google Scholar 

  36. Ja’fari A, Kadkhodaie-Ilkhchi A, Sharghi Y, Ghaedi M (2014) Integration of adaptive neuro-fuzzy inference system, neural networks and geostatistical methods for fracture density modeling. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles 69(7):1143–1154. https://doi.org/10.2516/ogst/2012055

    Article  Google Scholar 

  37. Anifowose FA, Labadin J, Abdulraheem A (2013) Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models. Int. J. Comput. Inf. Syst. Ind. Manage. Appl 5:413–426

    Google Scholar 

  38. Vilela LRM, Oluyemi G, Petrovski A (2019) A fuzzy inference system applied to value of information assessment for oil and gas industry. Decision Making: Applications in Management and Engineering 2(2):1–18

    Google Scholar 

  39. Stojcic M, Stjepanovic A, Stjepanovic Djordje (2019) ANFIS model for the prediction of generated electricity of photovoltaic modules. Decision Making: Applications in Management and Engineering 2(1):35–48

    Google Scholar 

  40. Walia N, Singh H, Sharma A (2015) ANFIS: Adaptive neuro-fuzzy inference system-a survey. Int J Comput Appl 123(13):515–535

    Google Scholar 

  41. Xuegong Z (2000) Statistical learning theory and support vector machines. Acta Automatica Sinica 26(1):32–42

    MathSciNet  Google Scholar 

  42. Xuegong Z (2000) Introduction to statistical learning theory and support vector machines. Acta Automatica Sinica 26(1):32–42

    MathSciNet  Google Scholar 

  43. Gholami R, Shahraki AR, Jamali Paghaleh M (2012) Prediction of hydrocarbon reservoirs permeability using support vector machine. Math Probl Eng. https://doi.org/10.1155/2012/670723

    Article  Google Scholar 

  44. Rostami H, Khaksar Manshad A (2014) A new support vector machine and artificial neural networks for prediction of stuck pipe in drilling of oil fields. J Energy Technol 136(2):67. https://doi.org/10.1115/1.4026917

    Article  Google Scholar 

  45. Zhong YH, Li R (2009) Application of principal component analysis and least square support vector machine to lithology identification. Well Logging Technol 33(5):425–429

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaheldin Elkatatny.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowida, A., Elkatatny, S. & Gamal, H. Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools. Neural Comput & Applic 33, 8043–8054 (2021). https://doi.org/10.1007/s00521-020-05546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05546-7

Keywords

Navigation