Log in

Tubular electrosynthesis of silica-coated magnetite and evaluation of magnetic nanobiocatalyst efficacy during biomass hydrolysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Magnetic nanobiocatalysts (MNBCs) are a promising immobilization approach to ease enzyme recovery during bioprocessing. However, industrial adoption of MNBCs is unfeasible because MNBC-synthesis involves complex and potentially expensive processing steps including synthesis of silica-coated superparamagnetic iron oxide nanoparticles (Si-SPIONs). We developed a single-step process for Si-SPION synthesis using a tubular electrochemical system (TES) and investigated the effect of concentration of the Na2SiO3 coating agent on Si-SPION properties. The Si-SPIONs were used as a support for attachment of polymer-cellulase conjugate to make MNBCs. The spherical Si-SPIONs were 8–12 nm in diameter including a 2-nm silica coating. Na2SiO3 concentration in the reactor did not affect Si-SPION morphology, but increasing Na2SiO3 concentration reduced SPION productivity in the reactor. Protective properties of the SPION silica coatings were demonstrated by showing that they prevented dissolution of SPIONs in an acid solution for 48 h. Enzyme attachment was quantified as protein adsorption on Si-SPIONs which reached 55 μg/mg Si-SPION. The MNBCs were recovered and reused four times. The use of TES for Si-SPION synthesis is promising to reduce MNBC production complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 30:512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Han J, Rong J, Wang Y et al (2018) Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility. Bioprocess Biosyst Eng 41:1051–1060. https://doi.org/10.1007/s00449-018-1934-z

    Article  CAS  PubMed  Google Scholar 

  3. Roth H-C, Schwaminger SP, Peng F, Berensmeier S (2016) Immobilization of cellulase on magnetic nanocarriers. ChemistryOpen 5:183–187. https://doi.org/10.1002/open.201600028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lien Y-H, Wu T-M (2008) Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J Colloid Interface Sci 326:517–521. https://doi.org/10.1016/j.jcis.2008.06.020

    Article  CAS  PubMed  Google Scholar 

  5. Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6:43989–44012. https://doi.org/10.1039/C6RA02129H

    Article  CAS  Google Scholar 

  6. Abhari N, Madadlou A, Dini A (2017) Structure of starch aerogel as affected by crosslinking and feasibility assessment of the aerogel for an anti-fungal volatile release. Food Chem 221:147–152. https://doi.org/10.1016/j.foodchem.2016.10.072

    Article  CAS  PubMed  Google Scholar 

  7. Sodipo BK, Aziz AA (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291. https://doi.org/10.1016/j.jmmm.2016.05.019

    Article  CAS  Google Scholar 

  8. Haddad PS, Duarte EL, Baptista MS et al (2004) Synthesis and characterization of silica-coated magnetic nanoparticles. Surface and Colloid Science. Springer, Berlin, pp 232–238

    Chapter  Google Scholar 

  9. Wang P, Zhu Y, Yang X, Li C (2007) Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres. Colloids Surf Physicochem Eng Asp 294:287–291. https://doi.org/10.1016/j.colsurfa.2006.08.015

    Article  CAS  Google Scholar 

  10. Abbas M, Abdel-Hamed MO, Chen J (2017) Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres. Appl Phys Mater Sci Process 123:775. https://doi.org/10.1007/s00339-017-1397-0

    Article  CAS  Google Scholar 

  11. Ahankar H, Ramazani A, Fattahi N et al (2018) Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives. J Chem Sci 130:166. https://doi.org/10.1007/s12039-018-1572-7

    Article  CAS  Google Scholar 

  12. Cendrowski K, Sikora P, Zielinska B et al (2017) Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Appl Surf Sci 407:391–397. https://doi.org/10.1016/j.apsusc.2017.02.118

    Article  CAS  Google Scholar 

  13. Setyawan H, Fajaroh F, Widiyastuti W et al (2012) One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution. J Nanoparticle Res 14:807. https://doi.org/10.1007/s11051-012-0807-7

    Article  CAS  Google Scholar 

  14. Karimzadeh I, Aghazadeh M, Ganjali MR et al (2017) Saccharide-coated superparamagnetic Fe3O4 nanoparticles (SPIONs) for biomedical applications: An efficient and scalable route for preparation and in situ surface coating through cathodic electrochemical deposition (CED). Mater Lett 189:290–294. https://doi.org/10.1016/j.matlet.2016.12.010

    Article  CAS  Google Scholar 

  15. Fajaroh F, Setyawan H, Nur A, Lenggoro IW (2013) Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Adv Powder Technol 24:507–511. https://doi.org/10.1016/j.apt.2012.09.008

    Article  CAS  Google Scholar 

  16. Xue D-S, Chen G-J, Su B-X et al (2020) On-line spectrophotometric determination of ferrous and total iron in monominerals by flow injection combined with a Schlenk line-based digestion apparatus to exclude oxygen. Microchem J 155:104743

    Article  CAS  Google Scholar 

  17. Zholobko O, Hammed A, Zakharchenko A, Borodinov N, Luzinov I, Urbanowicz B, Patsahan T, Ilnytskyi J, Minko S, Pryor SW, Voronov A (2021) Biomimetic cellulosomes assembled on molecular brush scaffolds: random complexes vs enzyme mixtures. ACS Appl Polym Mater 3(4):1840–1853

    Article  Google Scholar 

  18. Samaratunga A, Kudina O, Nahar N et al (2015) Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles. Appl Biochem Biotechnol 175:2872–2882

    Article  CAS  Google Scholar 

  19. Samaratunga A, Kudina O, Nahar N et al (2015) Modeling the effect of pH and temperature for cellulases immobilized on enzymogel nanoparticles. Appl Biochem Biotechnol 176:1114–1130

    Article  CAS  Google Scholar 

  20. Cabrera L, Gutierrez S, Menendez N et al (2008) Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  21. Aghazadeh M (2018) One-step cathodic electrosynthesis of surface capped Fe3O4 ultra-fine nanoparticles from ethanol medium without using coating agent. Mater Lett 211:225–229. https://doi.org/10.1016/j.matlet.2017.09.086

    Article  CAS  Google Scholar 

  22. Kalska-Szostko B, Wykowska U, Piekut K, Satuła D (2014) Stability of Fe3O4 nanoparticles in various model solutions. Colloids Surf Physicochem Eng Asp 450:15–24. https://doi.org/10.1016/j.colsurfa.2014.03.002

    Article  CAS  Google Scholar 

  23. Kudina O, Zakharchenko A, Trotsenko O et al (2014) Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angew Chem Int Ed 53:483–487. https://doi.org/10.1002/anie.201306831

    Article  CAS  Google Scholar 

  24. Arora R, Behera S, Sharma NK, Kumar S (2015) Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass. Bioresour Bioprocess 2:1–12

    Article  CAS  Google Scholar 

  25. Kohut A, Pryor SW, Voronov A, Minko S (2017) enzymogel nanoparticles chemistry for highly efficient phase boundary biocatalysis. In: Biocatalysis and nanotechnology. Jenny Stanford Publishing, pp 369–399

  26. Ishihara M, Uemura S, Hayashi N, Shimizu K (1991) Semicontinuous enzymatic hydrolysis of lignocelluloses. Biotechnol Bioeng 37:948–954

    Article  CAS  Google Scholar 

  27. Grunwald P (2017) Biocatalysis and Nanotechnology. Pan Standord Publishing, Singapore

    Book  Google Scholar 

Download references

Funding

This study was funded by the National Science Foundation (Grant number CBET 1604422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademola Hammed.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammed, A., Polunin, Y., Voronov, A. et al. Tubular electrosynthesis of silica-coated magnetite and evaluation of magnetic nanobiocatalyst efficacy during biomass hydrolysis. Bioprocess Biosyst Eng 45, 1311–1318 (2022). https://doi.org/10.1007/s00449-022-02746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02746-4

Keywords

Navigation