Log in

Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAA:

Poly(acrylic acid)

IUPAC:

International Union of Pure and Applied Chemistry

RSM:

Response surface methodology

ANOVA:

Analysis of variance

HPLC:

High-performance liquid chromatography

DNS:

Dinitrosalicylic acid

BSA:

Bovine serum albumin

References

  1. Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098.

    Article  CAS  Google Scholar 

  2. García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: how to improve the efficiency? Renewable and Sustainable Energy Reviews, 15, 964–980.

    Article  Google Scholar 

  3. Wyman, C. E. (1994). Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technology, 50, 3–15.

    Article  CAS  Google Scholar 

  4. Ikeda, Y., Parashar, A., & Bressler, D. (2014). Highly retained enzymatic activities of two different cellulases immobilized on non-porous and porous silica particles. Biotechnology and Bioprocess Engineering, 19, 621–628.

    Article  CAS  Google Scholar 

  5. Liang, W., & Cao, X. (2012). Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresource Technology, 116, 140–146.

    Article  CAS  Google Scholar 

  6. Ungurean, M., Paul, C., & Peter, F. (2013). Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Biotechnology and Bioprocess Engineering, 36, 1327–1338.

    Article  CAS  Google Scholar 

  7. Bayramoglu, G., & Arica, M. Y. (2010). Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. Journal of Molecular Catalysis B: Enzymatic, 62, 297–304.

    Article  CAS  Google Scholar 

  8. Brittain, W. J., & Minko, S. (2007). A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry, 45, 3505–3512.

    Article  CAS  Google Scholar 

  9. Wang, X., Xu, J., Li, L., Wu, S., Chen, Q., Lu, Y., Ballauff, M., & Guo, X. (2010). Synthesis of spherical polyelectrolyte brushes by thermo-controlled emulsion polymerization. Macromolecular Rapid Communications, 31, 1272–1275.

    Article  Google Scholar 

  10. Kudina, O., Zakharchenko, A., Trotsenko, O., Tokarev, A., Ionov, L., Stoychev, G., Puretskiy, N., Pryor, S. W., Voronov, A., & Minko, S. (2014). Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angewandte Chemie International Edition, 53, 483–487.

    Article  CAS  Google Scholar 

  11. Czeslik, C., Jackler, G., Steitz, R., & von Grünberg, H.-H. (2004). Protein binding to like-charged polyelectrolyte brushes by counterion evaporation. The Journal of Physical Chemistry B, 108, 13395–13402.

    Article  CAS  Google Scholar 

  12. Minko, S. (2006). Responsive polymer brushes. Journal of Macromolecular Science, 46, 397–420.

    Article  CAS  Google Scholar 

  13. Miletić, N., Nastasović, A., & Loos, K. (2012). Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresource Technology, 115, 126–135.

    Article  Google Scholar 

  14. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  15. Samaratunga, A., Kudina, O., Nahar, N., Zakharchenko, A., Minko, S., Voronov, A., & Pryor, S. W. (2015). Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles. Applied Biochemistry and Biotechnology, 175, 2872–2882.

    Article  CAS  Google Scholar 

  16. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  17. de Souza, C. J. A., Costa, D. A., Rodrigues, M. Q. R. B., dos Santos, A. F., Lopes, M. R., Abrantes, A. B. P., dos Santos Costa, P., Silveira, W. B., Passos, F. M. L., & Fietto, L. G. (2012). The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresource Technology, 109, 63–69.

    Article  Google Scholar 

  18. López-Linares, J. C., Romero, I., Cara, C., Ruiz, E., Castro, E., & Moya, M. (2014). Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. Journal of Chemical Technology & Biotechnology, 89, 104–110.

    Article  Google Scholar 

  19. Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  20. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

  21. Jeng, W.-Y., Wang, N.-C., Lin, M.-H., Lin, C.-T., Liaw, Y.-C., Chang, W.-J., Liu, C.-I., Liang, P.-H., & Wang, A. H. J. (2011). Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 173, 46–56.

    Article  CAS  Google Scholar 

  22. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.

    Article  Google Scholar 

  23. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  24. Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M., & Minko, S. (2009). Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases, 4, FA45–FA49.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Zor, T., & Seliger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 236, 302–308.

    Article  CAS  Google Scholar 

  27. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress, 23, 398–406.

    Article  CAS  Google Scholar 

  28. Tu, M., Zhang, X., Paice, M., MacFarlane, P., & Saddler, J. N. (2009). The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresource Technology, 100, 6407–6415.

    Article  CAS  Google Scholar 

  29. Jeya, M., Zhang, Y.-W., Kim, I.-W., & Lee, J.-K. (2009). Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresource Technology, 100, 5155–5161.

    Article  CAS  Google Scholar 

  30. Balsan, G., Astolfi, V., Benazzi, T., Meireles, M. A. A., Maugeri, F., Di Luccio, M., Dal Pra, V., Mossi, A. J., Treichel, H., & Mazutti, M. A. (2012). Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess and Biosystems Engineering, 35, 1229–1237.

    Article  CAS  Google Scholar 

  31. Ferreira, S., Duarte, A. P., Ribeiro, M. H. L., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45, 192–200.

    Article  CAS  Google Scholar 

  32. Ho, K. M., Mao, X., Gu, L., & Li, P. (2008). Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir, 24, 11036–11042.

    Article  CAS  Google Scholar 

  33. Zhou, J. (2010). Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application. Journal of Agricultural and Food Chemistry, 58, 6741–6746.

    Article  CAS  Google Scholar 

  34. Dwevedi, A., & Kayastha, A. M. (2009). Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technology, 100, 2667–2675.

    Article  CAS  Google Scholar 

  35. Huang, X.-J., Chen, P.-C., Huang, F., Ou, Y., Chen, M.-R., & Xu, Z.-K. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic, 70, 95–100.

    Article  CAS  Google Scholar 

  36. Pal, A., & Khanum, F. (2011). Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochemisty, 46, 1315–1322.

    Article  CAS  Google Scholar 

  37. Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51, 375–383.

    Article  CAS  Google Scholar 

  38. Figueira, J. D. A., Dias, F. F. G., Sato, H. H., & Fernandes, P. (2011). Screening of supports for the immobilization of β-glucosidase. Enzyme Research, 2011, 8.

    Article  Google Scholar 

  39. Singh, R., Zhang, Y.-W., Nguyen, N.-P.-T., Jeya, M., & Lee, J.-K. (2011). Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Applied Microbiology and Biotechnology, 89, 337–344.

    Article  CAS  Google Scholar 

  40. Yan, J., Pan, G., Li, L., Quan, G., Ding, C., & Luo, A. (2010). Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. Journal of Colloid and Interface Science, 348, 565–570.

    Article  CAS  Google Scholar 

  41. Yang, Y.-S., Zhang, T., Yu, S.-C., Ding, Y., Zhang, L.-Y., Qiu, C., & **, D. (2011). Transformation of geniposide into genipin by immobilized β-glucosidase in a two-phase aqueous-organic system. Molecules, 16, 4295–4304.

    Article  CAS  Google Scholar 

  42. Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57.

    Article  Google Scholar 

  43. Tan, I. S., & Lee, K. T. (2014). Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 184, 386–394.

    Article  Google Scholar 

  44. Zhou, Y., Pan, S., Wu, T., Tang, X., & Wang, L. (2013). Optimal immobilization of β-glucosidase into chitosan beads using response surface methodology. Electronic Journal of Biotechnology, 16, 1–13.

    Article  CAS  Google Scholar 

  45. Khan, S., Lindahl, S., Turner, C., & Karlsson, E. N. (2012). Immobilization of thermostable β-glucosidase variants on acrylic supports for biocatalytic processes in hot water. Journal of Molecular Catalysis B: Enzymatic, 80, 28–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Science Foundation (Arlington, VA) under grant numbers CBET 0966526 and CBET 0966574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Pryor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaratunga, A., Kudina, O., Nahar, N. et al. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. Appl Biochem Biotechnol 176, 1114–1130 (2015). https://doi.org/10.1007/s12010-015-1633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1633-z

Keywords

Navigation