Log in

Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Continuous accumulation of fossil CO2 in the atmosphere and increasingly dissolved CO2 in seawater leads to ocean acidification (OA), which is known to affect phytoplankton physiology directly and/or indirectly. Since increasing attention has been paid to the effects of OA under the influences of multiple drivers, in this study, we investigated effects of elevated CO2 concentration under different levels of light and nutrients on growth rate, particulate organic (POC) and inorganic (PIC) carbon quotas of the coccolithophorid Emiliania huxleyi. We found that OA treatment (pH 7.84, CO2 = 920 μatm) reduced the maximum growth rate at all levels of the nutrients tested, and exacerbated photo-inhibition of growth rate under reduced availability of phosphate (from 10.5 to 0.4 μmol l−1). Low nutrient levels, especially lower nitrate concentration (8.8 μmol l−1 compared with 101 μmol l−1), decreased maximum growth rates. Nevertheless, the reduced levels of nutrients increased the maximum PIC production rate. Decreased availability of nutrients influenced growth, POC and PIC quotas more than changes in CO2 concentrations. Our results suggest that reduced nutrient availability due to reduced upward advective supply because of ocean warming may partially counteract the negative effects of OA on calcification of the coccolithophorid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bach, L. T., U. Riebesell & K. G. Schulz, 2011. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography 56: 2040–2050.

    Article  CAS  Google Scholar 

  • Bach, L. T., U. Riebesell, M. A. Gutowska, L. Federwisch & K. G. Schulz, 2015. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography 135: 125–138.

    Article  Google Scholar 

  • Beardall, J., S. Roberts & J. A. Raven, 2005. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of Botany 83: 859–864.

    Article  CAS  Google Scholar 

  • Behrenfeld, M., R. O’Malley, D. Siegel, C. McClain, J. Sarmiento, G. Feldman, A. Milligan, P. Falkowski, R. Letelier & E. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.

    Article  CAS  Google Scholar 

  • Borchard, C., A. V. Borges, N. Händel & A. Engel, 2011. Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: a chemostat study. Journal of Experimental Marine Biology and Ecology 410: 61–71.

    Article  CAS  Google Scholar 

  • Boyd, P. W., S. T. Lennartz, D. M. Glover & S. C. Doney, 2015. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change 5: 71–79.

    Article  Google Scholar 

  • Boyd, P. W., P. W. Dillingham, C. M. McGraw, E. A. Armstrong, C. E. Cornwall, F. F. Feng, C. L. Hurd, M. Gault-Ringold, M. Y. Roleda, E. Timmins-Schiffman & B. L. Nunn, 2016. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change 6: 207–213.

    Article  Google Scholar 

  • Boyd, P. W., S. Collins, S. Dupont, K. Fabricius, J. P. Gattuso, J. Havenhand, D. A. Hutchins, U. Riebesell, M. S. Rintoul, M. Vichi, H. Biswas, A. Ciotti, K. Gao, M. Gehlen, C. L. Hurd, H. Kurihara, C. M. McGraw, J. M. Navarro, G. E. Nilsson, U. Passow & H. O. Pörtner, 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Global Change Biology 24: 1–23.

    Article  Google Scholar 

  • Brennan, G. & S. Colllins, 2015. Growth responses of a green alga to multiple environmental drivers. Nature Climate Change 5: 892–897.

    Article  Google Scholar 

  • Bruhn, A., J. LaRoche & K. Richardson, 2010. Emiliania huxleyi (Prymnesiophyceae): nitrogen-metabolism genes and their expression in response to external nitrogen sources. Journal of Phycology 46: 266–277.

    Article  CAS  Google Scholar 

  • Caldeira, K. & M. E. Wickett, 2003. Oceanography: anthropogenic carbon and ocean pH. Nature 425: 365.

    Article  CAS  Google Scholar 

  • Chen, X. & K. Gao, 2003. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum. Chinese Science Bulletin 48: 2616–2620.

    Article  CAS  Google Scholar 

  • Chou, W. C., D. D. Sheu, C. A. Chen, S. L. Wang & C. M. Tseng, 2005. Seasonal variability of carbon chemistry at the SEATS time-series site, Northern South China Sea betweeen 2002 and 2003. Terrestrial Atmospheric and Oceanic Sciences 16: 445–465.

    Article  Google Scholar 

  • Cloern, J. E., 1999. The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecology 33: 3–16.

    Article  Google Scholar 

  • Dickson, A. G., 1993. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Research 40: 107–118.

    Article  CAS  Google Scholar 

  • Dickson, A. G., J. D. Afghan & G. C. Anderson, 2003. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry 80: 185–197.

    Article  CAS  Google Scholar 

  • Dyhrman, S. T. & B. Palenik, 2003. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research 25: 1215–1225.

    Article  CAS  Google Scholar 

  • Eilers, P. & J. Peeters, 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215.

    Article  Google Scholar 

  • Feng, Y. Y., M. E. Warner, Y. H. Zhang, J. Sun, F. X. Fu, J. M. Rose & D. A. Hutchins, 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43: 87–98.

    Article  CAS  Google Scholar 

  • Feng, Y. Y., M. Y. Roleda, E. Armstrong, P. W. Boyd & C. L. Hurd, 2017. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnology and Oceanography 62: 519–540.

    Article  CAS  Google Scholar 

  • Finkel, Z. V., 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46: 86–94.

    Article  CAS  Google Scholar 

  • Gafar, N. A., B. D. Eyre & K. G. Schulz, 2018. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Frontiers in Marine Science 4: 433.

    Article  Google Scholar 

  • Gao, K. S., J. T. Xu, G. Gao, Y. H. Li, D. A. Hutchins, B. Q. Huang, L. Wang, Y. Zheng, P. **, X. N. Cai, D. P. Häder, W. Li, K. Xu, N. N. Liu & U. Riebesell, 2012a. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change 2: 519–523.

    Article  CAS  Google Scholar 

  • Gao, K., E. W. Helbling, D. P. Häder & D. A. Hutchins, 2012b. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Marine Ecology Progress Series 470: 167–189.

    Article  CAS  Google Scholar 

  • Geider, R. J., H. L. MacIntyre & T. M. Kana, 1997. A dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187–200.

    Article  Google Scholar 

  • Hansen, H. P. & F. Koroleff, 1999. Determination of nutrients. In Grasshoff, K., K. Kremling & M. Ehrhardt (eds), Methods of Seawater Analysis. Wiley, New Yrok: 159–228.

    Chapter  Google Scholar 

  • Harrison, W. G. & W. K. W. Li, 2008. Phytoplankton growth and regulation in the Labrador Sea: light and nutrient limitation. Journal of Northwest Atlantic Fishery Science 39: 71–82.

    Article  Google Scholar 

  • Hoffmann, R., C. Kirchlechner, G. Langer, A. S. Wochnik, E. Griesshaber, W. W. Schmah & C. Scheu, 2015. Insight into Emiliania huxleyi coccospheres by focused ion beam sectioning. Biogeosciences 12: 825–834.

    Article  Google Scholar 

  • Hutchins, D. A. & F. X. Fu, 2017. Microorganisms and ocean global change. Nature Microbiology 2: 17058.

    Article  CAS  Google Scholar 

  • **, P., J. Ding, T. **ng, U. Riebesell & K. Gao, 2017. High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi. Marine Ecology Progress Series 568: 47–58.

    Article  CAS  Google Scholar 

  • Kim, H. S., S. J. Hwang, J. K. Shin, K. G. An & C. G. Yoon, 2007. Effects of limiting nutrients and N: P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia 581: 255–267.

    Article  CAS  Google Scholar 

  • Kottmeier, D. M., S. D. Rokitta & B. Rost, 2016. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. New Phytologist 211: 126–137.

    Article  CAS  Google Scholar 

  • Langer, G., G. Nehrke, I. Probert, J. Ly & P. Ziveri, 2009. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6: 2637–2646.

    Article  CAS  Google Scholar 

  • Langer, G., K. Oetjen & T. Brenneis, 2013. Coccolithophores do not increase particulate carbon production under nutrient limitation: a case study using Emiliania huxleyi (PML92/11). Journal of Experimental Marine Biology and Ecology 443: 155–161.

    Article  CAS  Google Scholar 

  • Larsen, A., G. A. F. Flaten, R. Sandaa, T. Castberg, R. Thyrhaug, S. R. Erga, S. Jacquet & G. Bratbak, 2004. Spring phytoplankton bloom dynamics in Norwegian coastal waters: microbial community succession and diversity. Limnology and Oceanography 49: 180–190.

    Article  CAS  Google Scholar 

  • Leonardos, N. & R. J. Geider, 2005. Eleveted atmospheric carbon dioxide increases organic carbon fixation by Emiliania huxleyi (Haptophyta), under nutrient-limited high-light conditions. Journal of Phycology 41: 1196–1203.

    Article  CAS  Google Scholar 

  • Matthiessen, B., S. L. Eggers & S. A. Krug, 2012. High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation. Biogeosciences 9: 1195–1203.

    Article  CAS  Google Scholar 

  • McKew, B. A., P. Davey, S. J. Finch, J. Hopkins, S. C. Lefebvre, M. V. Metodiev, K. Oxborough, C. A. Raines, T. Lawso & R. J. Geider, 2013. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytologist 200: 74–85.

    Article  CAS  Google Scholar 

  • McKew, B. A., G. Metodieva, C. A. Raines, M. V. Metodier & R. J. Geider, 2015. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P. Environmental Microbiology 17: 4050–4062.

    Article  CAS  Google Scholar 

  • Meyer, J. & U. Riebesell, 2015. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12: 1671–1682.

    Article  Google Scholar 

  • Müller, M. N., A. N. Antia & J. LaRoche, 2008. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnology and Oceanography 53: 506–512.

    Article  Google Scholar 

  • Müller, M. N., L. Beaufort, O. Bernard, M. L. Pedrotti, A. Talec & A. Sciandra, 2012. Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences 9: 4155–4167.

    Article  Google Scholar 

  • Müller, M. N., T. W. Trull & G. M. Hallegraeff, 2017. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. ISME Journal 11: 1777–1787.

    Article  Google Scholar 

  • Nalewajko, C. & K. Lee, 1983. Light stimulation of phosphate uptake in marine phytoplankton. Marine Biology 74: 9–15.

    Article  Google Scholar 

  • Nimer, N. A. & M. J. Merrett, 1993. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist 123: 673–677.

    Article  CAS  Google Scholar 

  • Omar, A. M., A. Olsen, T. Johannessen, M. Hoppema, H. Thomas & A. V. Borges, 2010. Spatiotemporal variations of fCO2 in the North Sea. Ocean Science 6: 77–89.

    Article  CAS  Google Scholar 

  • Paasche, E., 2002. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529.

    Article  Google Scholar 

  • Pierrot, D., E. Lewis & D. W. R. Wallace, 2006. MS Excel Program Developed for CO2 System Calculations, ORNL/CDIAC-105. Department of Energy, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Richier, S., S. Fiorini, M. E. Kerros, P. Von Dassow & J. P. Gattuso, 2011. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level. Marine Biology 158: 551–560.

    Article  CAS  Google Scholar 

  • Riegman, R., W. Stolte, A. A. M. Noordeloos & D. Slezak, 2000. Nutrient uptake and alkaline phosphatase (EC3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology 36: 87–96.

    Article  CAS  Google Scholar 

  • Rokitta, S. D., P. von Dassow, B. Rost & U. John, 2014. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics 15: 1051–1064.

    Article  Google Scholar 

  • Rokitta, S. D., P. von Dassow, B. Rost & U. John, 2016. P- and N-depletion trigger similar cellular responses to promote senescence in eukaryotic phytoplankton. Frontiers in Marine Science 3: 109.

    Article  Google Scholar 

  • Rost, B. & U. Riebesell, 2004. Coccolithophores and the biological pump: responses to environmental changes. In Thierstein, H. R. & J. Young (eds), Coccolithophores—From Molecular Biology to Global Impact. Springer, Berlin: 99–125.

    Google Scholar 

  • Rouco, M., O. Branson, M. Lebrato & M. D. Iglesias-Rodríguez, 2013. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Frontiers in Microbiology 4: 155.

    Article  CAS  Google Scholar 

  • Roy, R. N., L. N. Roy, K. M. Vogel, C. Porter-Moore, T. Pearson, C. E. Good, F. J. Millero & D. C. Campbell, 1993. Thermodynamics of the dissociation of boric acid in seawater at S 5 35 from 0 degrees C to 55 degrees C. Marine Chemistry 44: 243–248.

    Article  CAS  Google Scholar 

  • Sciandra, A., J. Harlay, D. Lefévre, R. Lemée, P. Rimmelin, M. Denis & J. P. Gattuso, 2003. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Marine Ecology Progress Series 261: 111–122.

    Article  Google Scholar 

  • Sett, S., L. T. Bach, K. G. Schulz, S. Koch-Klavsen, M. Lebrato & U. Riebesell, 2014. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLOS ONE 9: e88308.

    Article  Google Scholar 

  • Shemi, A., D. Schatz, H. F. Fredricks, B. A. S. Van Mooy, Z. Porat & A. Vardi, 2016. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytologist 211: 886–898.

    Article  CAS  Google Scholar 

  • Steinacher, M., F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider & J. Segschneider, 2010. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7: 979–1005.

    Article  CAS  Google Scholar 

  • Suffrian, K., K. G. Schulz, M. Gutowska, U. Riebesell & M. Bleich, 2011. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist 190: 595–608.

    Article  CAS  Google Scholar 

  • Sunda, W. G., N. M. Price & F. M. M. Morel, 2005. Trace metal ion buffers and their use in culture studies. In Andersen, R. A. (ed.), Algal Culturing Techniques. Elsevier Academic Press, London: 53–59.

    Google Scholar 

  • Tong, S. Y., D. A. Hutchins, F. X. Fu & K. S. Gao, 2016. Effects of varying growth irradiance and nitrogen sources on calcification and physiological performance of the coccolithophore Gephyrocapsa oceanica grown under nitrogen limitation. Limnology and Oceanography 61: 2234–2242.

    Article  CAS  Google Scholar 

  • Wang, G., S. P. **e, R. X. Huang & C. Chen, 2015. Robust warming pattern of global subtropical oceans and its mechanism. Journal of Climate 28: 8574–8584.

    Article  Google Scholar 

  • **ng, T., K. Gao & J. Beardall, 2015. Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes. Photochemistry and Photobiology 91: 343–349.

    Article  CAS  Google Scholar 

  • Zhang, Y., L. T. Bach, K. G. Schulz & U. Riebesell, 2015. The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanica to ocean acidification. Limnology and Oceanography 60: 2145–2157.

    Article  CAS  Google Scholar 

  • Zhang, Y., L. T. Bach, K. T. Lohbeck, K. G. Schulz, L. Listmann, R. Klapper & U. Riebesell, 2018. Population-specific responses in physiological rates of Emilinia huxleyi to a broad CO2 range. Biogeosciences 15: 3691–3701.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation (41720104005, 41721005, 41806129), and Joint project of National Natural Science Foundation of China and Shandong province (No. U1606404), China Postdoctoral Science Foundation (2017M612129), and the outstanding postdoctoral program of State Key Laboratory of Marine Environmental Science (**amen University). FF and DH’s visits to **amen were supported by MEL’s visiting scientist program, and their contributions were supported by U.S. National Science Foundation grants OCE 1538525 and 1638804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fu, F., Hutchins, D.A. et al. Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi. Hydrobiologia 842, 127–141 (2019). https://doi.org/10.1007/s10750-019-04031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04031-0

Keywords

Navigation