Log in

Geodynamic significance and genesis of chromitites from the Islahiye ophiolite (Gaziantep, SE Anatolia) as constrained by platinum group element (PGE) compositions and mineral chemistry characteristics

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Chromitites associated with intensely altered dunites and harzburgites from fourteen different localities in the Islahiye ophiolites (SE Anatolia) is reported here for the first time. These chromitites were observed as lenticular and banded bodies with disseminated and massive textures and containing magnesiochromite grains with the following composition: Cr2O3 = 58.91–59.74 wt%, Al2O3 = 10.85–11.20 wt%, and TiO2 = 0.09–0.13 wt%. The Mg# [Mg/ (Mg + Fe2+)] values of magnesiochromite from the Islahiye ophiolite range between 0.52 and 0.60 and their Cr# [Cr/ (Cr + Al)] values vary from 0.7802 to 0.7844. These contents vary with a constant pattern, coincident with the estimated parental liquids that have originated from the derivative of a single bulk of boninitic magma together with Al, Ti-poor, and Cr-rich initial contents. The chromitites are serpentinised in almost all parts of the study area, and harzburgite and dunite can be observed in different locations. Although the overall composition of platinum group elements (PGE) in most examined chromitites varies between 97 and 191 ppb, three chromitites from the Islahiye region present enrichments in overall PGE (up to 214 ppb). The mineralogical and geochemical features of chromitites from the Islahiye region exhibit a robust similarity to podiform chromitites in the mantle fragment of supra–subduction zone type ophiolitic bodies. The estimated parental magmas of the investigated chromites are consistent with the differentiation of arc-related melts and do not suggest an oceanic spreading centre tectonic environment. The Islahiye chromites are enriched in IPGE (Ir, Os, Ru), with the occasional presence of Ru and Ir and higher Os contents in chromite. Furthermore, we did not find any platinum group minerals (PGM) associated with the serpentine silicate sample matrix, which would have stated a secondary enrichment in PGEs. All chromitites in the investigated region have high Cr and low Ti values, are defined as magnesiochromite and were crystallised from a characteristic boninitic magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akbulut M (2009) Güneybati Anadolu Kromit Yataklarinin Platin Grubu Element (PGE) Potansiyelleri, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Ankara, 181 syf (in Turkish with English abstract)

  • Akmaz RM, Uysal I, Saka S (2014) Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis. Ore Geol Rev 58:208–224. https://doi.org/10.1016/j.oregeorev.2013.11.007

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184. DOI: https://doi.org/10.1180/minmag.1992.056.383.04

    Article  Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures, Microbeam Analysis, 239-246.

  • Atan OR (1969) Eğribucak-Karacaören (Hassa)-Ceylanlı-Dazevleri (Kırıkhan) arasındaki Amanos dağlarının jeolojisi [The geology of the Amanos mountains among the Eğribucak-Karacaören (Hassa)-Ceylanlı-Dazevleri (Kırıkhan)]. General Directorate of Mineral Research and Exploration (MTA) Publication: 139 (in Turkish with English abstract)

  • Augé T, Maurizot P (1995) Stratiform and alluvial platinum mineralization in the New Caledonia ophiolite complex. Can Mineral 33:1023–1045

    Google Scholar 

  • Bacuta GC, Kay RW, Gibbs AK, Lipin BR (1990) Platinum–group element abundance and distribution in chromite deposits of the Acoje block, Zambales ophiolite complex Philippines. J Geochem Explor 37:113–145. https://doi.org/10.1016/0375-6742(90)90086-P

    Article  Google Scholar 

  • Bağcı U (2013) The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaraş region, Southern Turkey. Turk J Earth Sci 22:536–562. https://doi.org/10.3906/yer-1203-1

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302. https://doi.org/10.1093/petrology/42.12.2279

    Article  Google Scholar 

  • Bonavia FF, Diella V, Ferrario A (1993) Precambrian podiform chromitites from Kenticha Hill, Southern Ethiopia. Econ Geol 88:198–202. https://doi.org/10.2113/gsecongeo.88.1.198

    Article  Google Scholar 

  • Çiftçi Y, Dönmez C, Parlak O, Günay K (2019) Chromitite Deposits of Turkey in Tethyan Ophiolites. In: Pirajno F., Ünlü T., Dönmez C., Şahin M. (eds) Mineral Resources of Turkey. Modern Approaches in Solid Earth Sciences, 73–157. https://doi.org/10.1007/978-3-030-02950-0_3

  • Donovan JJ, Snyder DA, and Rivers ML (1993) An improved interference correction for trace element analysis in microbeam analysis, 2, 23-28.

    Article  Google Scholar 

  • Dubertret L (1955) Géologie des roches vertes du nord-ouest de la Syrie et du Hatay (Turquie). Notes Mémoires Moyen-Orient 6:227

    Google Scholar 

  • Engin T, Özkoçak O, Artan U (1986) General geological set ting and character of chromite deposits in Turkey. In: Pe-trascheck W, Karamata S, Kravchenko GG, Johan J, Economou M, Engin T (eds) Chromites. Theophrastus Publ. S.A., Athens, pp 199–228

    Google Scholar 

  • González-Jiménez JM, Griffin WL, Gervilla F, Proenza JA, O’Reilly SY, Pearson NJ (2014a) Chromitites in ophiolites: how, where, when, why?, Part 1. A review and new ideas on the origin and significance of platinum–group minerals. Lithos 189:127–139. https://doi.org/10.1016/j.lithos.2013.06.016

    Article  Google Scholar 

  • González-Jiménez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014b) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189:140–158. https://doi.org/10.1016/j.lithos.2013.09.008

    Article  Google Scholar 

  • Graham IT, Franklin BJ, Marshall B (1996) Chemistry and mineralogy of podiform chromitite deposits, Southern NSW, Australia: a guide to their origin and evolution. Mineral Petrol 37:129–150. https://doi.org/10.1007/BF01162355

    Article  Google Scholar 

  • Harris DC, Cabri LJ (1991) Nomenclature of platinum–group–element alloys: Review and revision. Can Mineral 29:231–237

    Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters Volume 133:(3–4):463–473. https://doi.org/10.1016/0012-821X(95)00096-U

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr–spinel and melt inclusions from primitive rocks. J Petrol 42:655–671. https://doi.org/10.1093/petrology/42.4.655

    Article  Google Scholar 

  • Kapsiotis A, Grammatikopoulos AT, Tsikouras B, Hatzipanagiotou K, Zaccarini F, Garuti G (2011) Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): evidence for progressively elevated ƒAs conditions in the upper mantle sequence. Mineral Petrol 101:129–150. https://doi.org/10.1007/s00710-010-0140-8

    Article  Google Scholar 

  • Kozlu-Erdal H, Melcher F (2007a) Mineralogy and geochemistry of platinum-group element enrichments in Berit (Maraş) chromitites, southeastern Turkey. European Geosciences Union General Assembly, abs

  • Kozlu-Erdal H, Melcher F (2007b) Berit (Kahramanmaraş) metaofiyoliti kromititlerindeki platin grubu elementler ve mineral zenginleşmesinin jeokimyası, mineralojisi ve petrolojisi, Güneydoğu Türkiye. 60. Türkiye Jeoloji KurultayıBildiri Özleri, 16–22 Nisan 2007, Ankara, pp. 205–208. (in Turkish with English abstract)

  • Leblanc M (1997) Chromitite and ultramafic rock compositional zoning through a paleotransform fault, Poum, New Caledonia. Econ Geol 92:503–504. https://doi.org/10.2113/gsecongeo.92.4.503

    Article  Google Scholar 

  • MTA (General Directrorate of Mineral Research and Exploration) (2015) Vertical stratigraphic section and Geological Map of Islahiye, Ankara–Turkey

  • Nurlu N, Parlak O, Robertson AHF, Quadt A (2016) Implications of Late Cretaceous U–Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochton in SE Anatolia (Helete area, Kahramanmaraş region, SE Turkey). Int J Earth Sci 105:283–314. https://doi.org/10.1007/s00531-015-1211-1

    Article  Google Scholar 

  • Prichard HM, Neary CR, Fisher FC, O’Hara MJ (2008) PGE–rich podiform chromitites in the Al’Ays ophiolite complex, Saudi Arabia: an example of critical mantle melting to extract and concentrate PGE. Econ Geol 103:1507–1529. https://doi.org/10.2113/gsecongeo.103.7.1507

    Article  Google Scholar 

  • A. H. F., Robertson O., Parlak T., Rízaoğlu Ü., Ünlügenç N., İnan K., Tasli T., Ustaömer (2007) (2007) Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elaziğ region SE Turkey). Geological Society London Special Publications 272(1) 231-270 10.1144/GSL.SP.2007.272.01.14

    Article  Google Scholar 

  • Robertson AHF, Ustaömer T (2009) Formation of the Late Palaeozoic Konya Complex and comparable units in southern Turkey by subduction-accretion processes: Implications for the tectonic development of Tethys in the Eastern Mediterranean region. Tectonophysics 473:113–148. https://doi.org/10.1016/j.tecto.2008.10.027

    Article  Google Scholar 

  • Pagé P, Barnes SJ (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Econ Geol 104:997–1018. https://doi.org/10.2113/econgeo.104.7.997

    Article  Google Scholar 

  • Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: Plate tectonic approach. Tectonopysics 75:181–241. https://doi.org/10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  • Stowe CW (1994) Compositions and tectonic settings of chromite deposits through time. Econ Geol 89:528–546. https://doi.org/10.2113/gsecongeo.89.3.528

    Article  Google Scholar 

  • Su B, Liu X, Chen C, Robinson PT, **ao Y, Zhou M, Bai Y, Uysal İ, Zhang P (2021) A new model for chromitite formation in ophiolites: Fluid immiscibility. Sci China Earth Sci 64:220–230. https://doi.org/10.1007/s11430-020-9690-4

    Article  Google Scholar 

  • Tanırlı M, Rızaoglu T (2016) Whole–rock and mineral chemistry of mafic cumulates from the Low–Ti ophiolite in the southern part of Kahramanmaras, Turkey, Russian Geology and Geophysics Volume 57, Issue 10, October 2016, pp. 1398–1418. https://doi.org/10.1016/j.rgg.2016.01.018

  • Uysal I, Akmaz RM, Kapsiotis A, Demir Y, Saka S, Avci E, Müller D (2015) Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancık ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data. Ore Geol Rev 65:26–41. https://doi.org/10.1016/j.oregeorev.2014.08.006

    Article  Google Scholar 

  • Uysal I, Sadiklar MB, Tarkian M, Karsli O, Aydin F (2005) Mineralogy and composition of the chromitites and their platinum–group minerals from Ortaca (Muğla SW Turkey): evidence for ophiolitic chromitite genesis. Mineral Petrol 83:219–242. https://doi.org/10.1007/s00710-004-0063-3

    Article  Google Scholar 

  • Uysal I, Tarkian M, Sadıklar MB, Sen C (2007) Platinum group–elementgeochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, Northeastern Turkey. Can Mineral 45:355–377. https://doi.org/10.2113/gscanmin.45.2.355

    Article  Google Scholar 

  • Yang K, Seccombe PK (1993) Platinum–group minerals in the chromitites fromthe Great Serpentinite belt, NSW, Australia. Mineral Petrol 47:263–286. https://doi.org/10.1007/BF01161571

    Article  Google Scholar 

  • Yilmaz Y, Demirkol C, Yalçin N, Yiğitbaş E, Gürpınar O, Yetiş C, Günay Y, Saritaş B (1984) Amanos Dağlarinin Jeolojisi, II Ofiyolit [The geology of the Amanos mountains, II Ophiolite]. İstanbul Teknik Üniversitesi Mühendislik Fakültesi Publication 351. (in Turkish with English abstract)

  • Yilmaz Y, Yigitbas E, Genc SC (1993) Ophiolitic and metamorphic ssemblages of Southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics 12:1280–1297. https://doi.org/10.1029/93TC00597

    Article  Google Scholar 

  • Zhou M, Robinson PT, Su B, Gao J, Li J, Yang J, Malpas J (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 26:262–283. https://doi.org/10.1016/j.gr.2013.12.011

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on the M.Sc. study of the second author. The authors would like to thank Çukurova University Research Foundation for their support (Project No: FYL-2018-10437; FBA-2021-13093). The authors would like to give special thanks to Dr. Andrew LOCOCK (Alberta University, CANADA) for performing mineral chemistry analyses. The authors are also indebted to the anonymous reviewers and the editor of the journal for their constructive comments and suggestions, which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Nil YAPICI: Conceptualization, data collection, investigation, validation, writing review and editing. Gael Calo sinda NGBANGANDIMBO: Conceptualization, data collection, writing original draft, formal analysis, and methodology. Nusret NURLU: Conceptualization, data collection, writing original draft, formal analysis, and methodology.

Corresponding author

Correspondence to Nusret Nurlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapici, N., sinda Ngbangandimbo, G.C. & Nurlu, N. Geodynamic significance and genesis of chromitites from the Islahiye ophiolite (Gaziantep, SE Anatolia) as constrained by platinum group element (PGE) compositions and mineral chemistry characteristics. Acta Geochim 41, 741–752 (2022). https://doi.org/10.1007/s11631-022-00541-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00541-2

Keywords

Navigation