Log in

WRF high resolution dynamical downscaling of ERA-Interim for Portugal

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study proposes a dynamically downscaled climatology of Portugal, produced by a high resolution (9 km) WRF simulation, forced by 20 years of ERA-Interim reanalysis (1989–2008), nested in an intermediate domain with 27 km of resolution. The Portuguese mainland is characterized by large precipitation gradients, with observed mean annual precipitation ranging from about 400 to over 2,200 mm, with a very wet northwest and rather dry southeast, largely explained by orographic processes. Model results are compared with all available stations with continuous records, comprising daily information in 32 stations for temperature and 308 for precipitation, through the computation of mean climatologies, standard statistical errors on daily to seasonally timescales, and distributions of extreme events. Results show that WRF at 9 km outperforms ERA-Interim in all analyzed variables, with good results in the representation of the annual cycles in each region. The biases of minimum and maximum temperature are reduced, with improvement of the description of temperature variability at the extreme range of its distribution. The largest gain of the high resolution simulations is visible in the rainiest regions of Portugal, where orographic enhancement is crucial. These improvements are striking in the high ranking percentiles in all seasons, describing extreme precipitation events. WRF results at 9 km compare favorably with published results supporting its use as a high-resolution regional climate model. This higher resolution allows a better representation of extreme events that are of major importance to develop mitigation/adaptation strategies by policy makers and downstream users of regional climate models in applications such as flash floods or heat waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2008) Sensitivity study of regional climate model simulations to large scale nudging parameters. Mon Weather Rev 137:1666–1686. doi:10.1175/2008MWR2620.1

    Article  Google Scholar 

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Diez Y (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization. J Clim 24:5633–5651. doi:10.1175/JCLI-D-11-00073.1

    Article  Google Scholar 

  • Barstad I, Sorteberg A, Flatøy F, Déqué M (2009) Precipitation, temperature and wind in Norway: dynamical downscaling of ERA40. Clim Dyn 33:769–776. doi:10.1007/s00382-008-0476-5

    Article  Google Scholar 

  • Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation datasets over the Iberian Peninsula. J Geophys Res. doi:10.1029/2010JD015481 (in press)

  • Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The ERA-Interim Archive. ERA report series. 1. Technical report. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading

  • Betts AK (1986) A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart J Roy Meteor Soc 112:677–691

    Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart J Roy Meteor Soc 112:693–709

    Google Scholar 

  • Brankovic C, Gregory D (2001) Impact of horizontal resolution on seasonal integrations. Clim Dyn 18:123–143

    Article  Google Scholar 

  • Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteor Climatol 48:2152–2159. doi:10.1175/2009JAMC2186.1

    Article  Google Scholar 

  • Caldwell PM, Chin H-NS, Bader DC, Bala G (2009) Evaluation of a WRF based dynamical downscaling simulation over California. Climatic Change 95:499–521

    Article  Google Scholar 

  • Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: an assessment of value added using a regional climate model. J Geophys Res (Atmospheres) 110:D05108. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al. (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press

  • Collins WD et al (2004) Description of the NCAR community atmospheric model (CAM 3.0). NCAR tech. note, NCAR/TN-4641STR, 226 pp

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan BJ, Yin X, Gleason BE, Vose RS, Rutledge G et al (2011) The twentieth century reanalysis project. Quarterly J Roy Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Derbyshire SH, Beau I, Bechtold P, Grandpeix J-Y, Piriou J-M, Redelsperger J-L, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Quart J Roy Meteor Soc 130:3055–3080

    Article  Google Scholar 

  • Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for western United States. Clim Change 15:383–422

    Google Scholar 

  • Fischer E, Lawrence D, Sanderson B (2011) Quantifying uncertainties in projections of extremes—a perturbed land surface parameter experiment. Clim Dyn 37:1381–1398. doi:10.1007/s00382-010-0915-y

  • Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105. doi:10.1007/s00382-010-0785-3

    Article  Google Scholar 

  • Fowler HJ, Blenkinshop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Giorgi F (2002) Variability and trends of sub-continental scale surface climate in the twentieth century. Obs Clim Dyn, Part I. doi:10.1007/s00382-001-0204-x

    Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to regional climate change simulation: a review. Rev of Geophys 29:191–216

    Article  Google Scholar 

  • Giorgi F, Mearns L (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):6335–6352

    Article  Google Scholar 

  • Giorgi F et al (2001) Regional climate information: Evaluation and projections. In climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT et al. (ed).Cambridge and New York: Cambridge University Press, pp 583–638

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorterberg A (2010) Dynamical downscaling or ERA-40 in complex terrain using WRF regional Climate model. Clim Dyn. doi:10.1007/s00382-010-0928-6

    Google Scholar 

  • Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115:D21117. doi:10.1029/2010JD013936

    Article  Google Scholar 

  • Hofstra N, HaylockM NewM, Jones PD (2009a) Testing EOBS European high-resolution gridded dataset of daily precipitation and surface temperature. J Geophys Res. doi:10.1029/2009JD011799

    Google Scholar 

  • Hofstra N, New M, McSweeney C (2009b) The influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Clim Dyn (in press)

  • Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429–1443

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Janjic ZI (2000) Comments on “development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57:3686

    Article  Google Scholar 

  • Janjic ZI (2001) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP office note 437, 61 pp

  • Jiao Y, Caya D (2006) An investigation of summer precipitation simulated by the Canadian regional climate model. Mon Weather Rev 134:919–932. doi:10.1175/MWR3103.1

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart J Roy Meteor Soc 121:1413–1449

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kanamaru H, Kanamitsu M (2007) Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). part II: comparison with North American regional reanalysis. J Clim 20:5572–5592. doi:10.1175/2007JCLI1482.1

    Article  Google Scholar 

  • Kanamitsu M, Kanamaru H (2007) 57-year California reanalysis downscaling at 10 km (CaRD10) Part I. System detail and validation with observations. J Clim 20:5527–5552. doi:10.1175/2007JCLI1482.1

    Article  Google Scholar 

  • Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J of Climatol 22:1441–1453

    Article  Google Scholar 

  • Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191. doi:10.1002/joc.1779

    Article  Google Scholar 

  • Laprise R (2008) Regional climate modeling. J Comput Phys 227:3641–3666. doi:10.1016/j.jcp.2006.10.024

    Article  Google Scholar 

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys Res Lett 36:L03820. doi:10.1029/2008GL036445

    Article  Google Scholar 

  • Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research: needs and opportunities. Bull Am Meteorol Soc 84:89–95. doi:10.1175/BAMS-84-1-89

    Article  Google Scholar 

  • Liang XZ, Choi HI, Kunkel KE, Dai Y, Joseph E, Wang JXL (2005) Surface boundary conditions for mesoscale regional climate models. Earth Interactions 9

  • Lo JCF, Yang ZL, Pielke RA Sr (2008) Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. J Geophys Res 113:D09112. doi:10.1029/2007JD009216

    Article  Google Scholar 

  • McGregor JL (1997) Regional climate modelling. Meteorol Atmos Phys 63:105–117

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the IPCC. Cambridge University Press, Cambridge, pp 747–846

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res 109:D13104. doi:10.1029/2003JD004495

    Article  Google Scholar 

  • Miranda PMA, Coelho F, Tomé AR, Valente MA, Carvalho A, Pires C, Pires HO, Cabrinha VC, Ramalho C (2002) 20th century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate Change in Portugal: Scenarios, Impacts and Adptation Measures 2–83 Gradiva

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mölders N, Kramm G (2010) A case study on wintertime inversions in Interior Alaska with WRF. Atmos Res 95(2–3):314–332

    Article  Google Scholar 

  • Paredes D, Trigo RM, García-Herrera R, Trigo IF (2006) Understanding precipitation changes in Iberia in early spring: Weather ty** and storm-tracking approaches. J Hydrometeorol 7:101–113

    Article  Google Scholar 

  • Prömmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int J Climatol 30:760–773. doi:10.1002/joc.1916

    Google Scholar 

  • Randall DA, Wood RA et al (2007) Climate models and their evaluation. In: climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Cambridge University Press, Cambridge and New York, NY

  • Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Part I: Seasonal. Clim Dynamics 35:685–711

    Article  Google Scholar 

  • Sistema Nacional de Informação de Recursos Hídricos (2010). Available at http://snirh.pt/

  • Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR tech. note TN-475_STR, 113 pp

  • Smith RB, Barstad I (2004) A linear theory of orographic precipitation. J Atmos Sci 61:1377–1391

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather Rev 118:1250–1277

    Article  Google Scholar 

  • Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2009) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn. doi:10.1007/s00382-009-0613-9

    Google Scholar 

  • Teixeira J et al (2011) Tropical and sub-tropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific crosssection intercomparison (GPCI). J Clim (in press)

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) E ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK, 160 pp

  • Vannitsem SF, Chomé F (2005) One-way nested regional climate simulations and domain size. J Clim 18:229–233

    Article  Google Scholar 

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Waldron KM, Peagle J, Horel JD (1996) Sensitivity of a spectrally filtered and nudged limited area model to outer model options. Mon Weather Rev 124:529–547

    Article  Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee D-K, Wang W-C et al (2004) Regional climate modelling: progress, challenges, and prospects. J Meteorol Soc Japan 82:1599–1628

    Article  Google Scholar 

  • Warner T, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteor Soc 78:2599–2617

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Elsevier, Amsterdam

    Google Scholar 

  • Zhang Y, Dulière V, Mote P, Salathé EP Jr (2009) Evaluation of WRF and HadRM mesoscale climate simulations over the United States Pacific Northwest. J Clim 22:5511–5526

    Article  Google Scholar 

  • Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Clim 11:2200–2222

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous reviewers of this manuscript for their comments and suggestions. This work was funded by the Portuguese Science Foundation (FCT) under project REWRITE- PTDC/CLI/73814/2006, and PEST-OE/CTE/LA0019/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. M. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, P.M.M., Cardoso, R.M., Miranda, P.M.A. et al. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39, 2497–2522 (2012). https://doi.org/10.1007/s00382-012-1315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1315-2

Keywords

Navigation