Log in

Constraints of two-colour TiRe-LII at elevated pressures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The main objective of this work is to investigate the influence of high-pressure conditions on the determination of primary particle size distributions of laser-heated soot particles using pyrometrically determined temperature decays. The method is based on time-resolved laser-induced incandescence measurements carried out at two different wavelengths (two-colour TiRe-LII). The LII signals are transferred into a particle ensemble averaged (effective) temperature using Planck’s thermal radiation formula. Assuming that all particles within the size distribution possess a unique temperature at the end of the laser pulse, the size distribution can be determined by numerically simulating the measured temperature decay. From our investigations, for pressures up to a few bars it is obvious that this strategy can be successfully applied if standard laser pulses of nano-second duration are used as an LII-excitation source. At higher pressures the time scales of heat conduction are decreased to such an extent that a unique temperature for all particles within the ensemble cannot be assumed at the end of the nano-second laser pulse. However, further investigations show that the presented two-colour TiRe-LII technique can be successfully adopted under technical high-pressure conditions as well, if the pulse duration of the TiRe-LII-excitation source is reduced into the pico-second range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203 (1983)

    Article  Google Scholar 

  2. C.J. Dasch, Appl. Opt. 23, 2209 (1984)

    Article  ADS  Google Scholar 

  3. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  4. Ö.L. Gülder, Combust. Flame 88, 74 (1992)

    Article  Google Scholar 

  5. D.L. Hofeldt, SAE Tech. Paper Ser. No. 930079 (1993), p. 45

  6. N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Google Scholar 

  7. B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)

    Article  Google Scholar 

  8. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  9. P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)

    Article  ADS  Google Scholar 

  10. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  11. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  12. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  13. D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, in Proc. Congr. Advanced Non-Intrusive Instrumentation for Propulsion Engines (AGARD, Neuilly, 1997)

    Google Scholar 

  14. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  15. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

  16. T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)

    Article  Google Scholar 

  17. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  18. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  19. C. Shoemaker-Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  20. H.A. Michelson, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  21. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  22. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  23. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  24. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  25. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  26. F. Liu, D.R. Snelling, G.J. Smallwood, in Proc. IMECE2005, ASME Int. Mechanical Engineering Congr. Expos., 5–11 November 2005, Orlando, FL, USA (2005), pp. 355–364

    Google Scholar 

  27. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  28. S.-A. Kuhlmann, J. Reimann, S. Will, Chem. Ing. Tech. 81, 803 (2009)

    Article  Google Scholar 

  29. R.J. Thorn, G.H. Winslow, J. Chem. Phys. 26, 186 (1957)

    Article  ADS  Google Scholar 

  30. K. Schäfer, E. Lax (eds.), Landolt-Börnstein, II2a, 6th edn. (Springer, Berlin, 1960), pp. 1–30

  31. T.P. Jenkins, R.K. Hanson, Combust. Flame 126, 1669 (2001)

    Article  Google Scholar 

  32. W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 161 (1969)

    Article  Google Scholar 

  33. S.C. Lee, C.L. Tien, Proc. Combust. Inst. 18, 1159 (1981)

    Google Scholar 

  34. B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993)

    Article  Google Scholar 

  35. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)

    Article  Google Scholar 

  36. B.F. Kock, Th. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)

    Article  Google Scholar 

  37. M. Hofmann, W.G. Bessler, Ch. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)

    Article  ADS  Google Scholar 

  38. T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403 (2006)

    Article  ADS  Google Scholar 

  39. K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006)

    Article  ADS  Google Scholar 

  40. M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629 (2008)

    Article  ADS  Google Scholar 

  41. R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156, 120 (2009)

    Article  Google Scholar 

  42. H. Michelsen, Appl. Phys. B 83, 443 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suntz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charwath, M., Suntz, R. & Bockhorn, H. Constraints of two-colour TiRe-LII at elevated pressures. Appl. Phys. B 104, 427–438 (2011). https://doi.org/10.1007/s00340-011-4432-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4432-4

Keywords

Navigation