Log in

Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments: a comparative study

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study experimental single-pulse, time-resolved laser-induced incandescence (TIRE-LII) signal intensity profiles acquired during transient Diesel combustion events at high pressure were processed. Experiments were performed between 0.6 and 7 MPa using a high-temperature high-pressure constant volume cell and a heavy-duty Diesel engine, respectively. Three currently available LII sub-model functions were investigated in their performance for extracting ensemble mean soot particle diameters using a least-squares fitting routine, and a “quick-fit” interpolation approach, respectively. In the calculations a particle size distribution as well as the temporal and spatial intensity profile of the heating laser was taken into account. For the poorly characterized sample environments of this work, some deficiencies in these state-of-the-art data evaluation procedures were revealed. Depending on the implemented model function, significant differences in the extracted particle size parameters are apparent. We also observe that the obtained “best-fit” size parameters in the fitting procedure are biased by the choice of their respective “first-guess” initial values. This behavior may be caused by the smooth temporal profile of the LII cooling curve, giving rise to shallow local minima on the multi-parameter least squares residuals, surface sampled during the regression analysis procedure. Knowledge of the gas phase temperature of the probed medium is considered important for obtaining unbiased size parameter information from TIRE-LII measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  2. R.J. Santoro, C.R. Shaddix, Laser-induced Incandescence. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002)

  3. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  4. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  5. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 12, 2052 (2003)

    Article  ADS  Google Scholar 

  6. B. Bougie, L. Ganippa, A.P. van Vliet, N.J. Dam, W.L. Meerts, J.J. ter Meulen, submitted to Combust. Flame (2005)

  7. B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)

    Article  Google Scholar 

  8. J.E. Dec, P.L. Kelly-Zion, SAE Technical Paper Series 2000-01-0238, 23 (2000)

  9. K. Inagaki, S. Takasu, K. Nakakita, SAE Technical Paper Series 1999-01-0508 (1999)

  10. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, Phys. Chem. Chem. Phys. 4, 3780 (2002)

    Article  Google Scholar 

  11. T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)

    Article  Google Scholar 

  12. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  13. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

  14. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  15. B. Öktem, M.P. Tolocka, B. Zhao, H. Wang, M.V. Johnston, Combust. Flame 142, 364 (2005)

    Article  Google Scholar 

  16. M.M. Maricq, Combust. Flame 137, 340 (2004)

    Article  Google Scholar 

  17. T.C. Fang, C.M. Megaridis, W.A. Sowa, G.S. Samuelson, Combust. Flame 112, 312 (1998)

    Article  Google Scholar 

  18. Ü.Ö. Köylü, J.C. **ng, D.E. Rosner, Langmuir 11, 4848 (1995)

    Article  Google Scholar 

  19. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quantum. Spectrosc. Radiat. Transf. 93, 301 (2005)

    Article  ADS  Google Scholar 

  20. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)

    Article  Google Scholar 

  21. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  22. Ü.Ö. Köylü, Combust. Flame 109, 488 (1997)

    Article  Google Scholar 

  23. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  24. MATLAB routines, MathWorks USA

  25. S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)

    Article  ADS  Google Scholar 

  26. B. Bougie, M. Tulej, T. Dreier, N.J. Dam, T. Gerber, J.J. ter Meulen, Appl. Phys. B 80, 1039 (2005)

    Article  ADS  Google Scholar 

  27. B. Bougie, L.C. Ganippa, A.P. van Vliet, K. Verbiezen, N.J. Dam, W.L. Meerts, J.J. ter Meulen, Proc. European Combustion Meeting (2005), p. 166

  28. D.R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D.J. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder, W.D. Bachalo, SAE Technical Paper Series 2000-01-1994 (2000)

  29. M. Williams, S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, 1991)

    Google Scholar 

  30. B. Hu, B. Yang, Ü.Ö. Köylü, Combust. Flame 134, 93 (2003)

    Article  Google Scholar 

  31. S.S. Krishnan, K.-C. Lin, G.M. Faeth, Int. J. Heat Mass Transf. 122, 517 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dreier.

Additional information

PACS

42.62.-b; 51.30.+i; 82.20.Wt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreier, T., Bougie, B., Dam, N. et al. Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments: a comparative study. Appl. Phys. B 83, 403–411 (2006). https://doi.org/10.1007/s00340-006-2207-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2207-0

Keywords

Navigation