Log in

Metal oxide hollow nanoparticles formation by a single nanosecond pulsed laser ablation in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the trend of metal oxide hollow nanoparticles formation is experimentally inspected by a single nanosecond pulsed laser ablation of a bulk metal material in water and/or ethanol. Analysis results by transmission electron microscope indicate that the hollow formation can be completed or initiated by a single nanosecond laser pulse, dictated by the diffusive thermo-chemical and/or bubble-assisted assembly mechanisms, depending on the surrounding liquid medium and laser parameters. The results not only provide experimental clues to unveiling complex mechanisms involved with the hollow formation by the multiple laser shots but also will contribute to improving the hollow particle production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

    Article  Google Scholar 

  2. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  3. H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Func. Mat. 22, 1333 (2012)

    Article  Google Scholar 

  4. X.W. Lou, L.A. Archer, Adv. Mat. 20, 1853 (2008)

    Article  Google Scholar 

  5. Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Angew. Chem. 44, 5083 (2005)

    Article  Google Scholar 

  6. T. Gao, B.P. Jelle, L.I.C. Sandberg, A. Gustavsen, ACS Appl. Mater. Interfaces 5, 761 (2013)

    Article  Google Scholar 

  7. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, X.W. Du, Langmuir 26, 16652 (2010)

    Article  Google Scholar 

  8. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, JACS 132, 9814 (2010)

    Article  Google Scholar 

  9. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  10. Z. Yan, R. Bao, C.M. Busta, D.B. Chrisey, Nanotechnology 22, 265610 (2011)

    Article  ADS  Google Scholar 

  11. H.J. Jung, M.Y. Choi, J. Phys. Chem. C 118, 14647 (2014)

    Article  Google Scholar 

  12. D.M. Arboleda, J.M.J. Santillán, L.J.M. Herrera, M.B.F. van Raap, P.M. Zélis, D. Muraca, D.C. Schinca, L.B. Scaffardi, J. Phys. Chem. C 119, 13184 (2015)

    Article  Google Scholar 

  13. S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T.D.S. Rolo, A. Plech, J. Colloid Interface Sci 489, 106 (2017)

    Article  ADS  Google Scholar 

  14. Z. Yan, R. Bao, Y. Huang, A.N. Caruso, S.B. Qadri, C.Z. Dinu, D.B. Chrisey, J. Phys. Chem. C 114, 3869 (2010)

    Article  Google Scholar 

  15. Y. Zijie, D.B. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012)

    Article  Google Scholar 

  16. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)

    Article  ADS  Google Scholar 

  17. H.J. Fan, U. Gosele, M. Zacharias, Small 3, 1660 (2007)

    Article  Google Scholar 

  18. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004)

    Article  ADS  Google Scholar 

  19. S. Mrowec, M. Danielewski, A. Wojtowicz, J. Mater. Sci. 33, 2617 (1998)

    Article  ADS  Google Scholar 

  20. M. Dell’Aglio, R. Gaudiuso, O.D. Pascale, A.D. Giacomo, Appl. Surf. Sci. 348, 4 (2015)

    Article  Google Scholar 

  21. F.C. Nix, F.E. Jabot, Phys. Rev. 82, 72 (1951)

    Article  ADS  Google Scholar 

  22. Z. Yan, R. Bao, Y. Huang, D.B. Chrisey, J. Phys. Chem. C 114, 11370 (2010)

    Article  Google Scholar 

  23. Z. Yan, R. Bao, R.N. Wright, D.B. Chrisey, Appl. Phys. Lett. 97, 124106 (2010)

    Article  ADS  Google Scholar 

  24. G. Viau, V. Collière, L.-M. Lacroix, G.A. Shafeev, Chem. Phys. Lett. 501, 419 (2011)

    Article  ADS  Google Scholar 

  25. P.G. Kuzmin, G.A. Shafeev, G. Viau, B. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 258, 9283 (2012)

    Article  ADS  Google Scholar 

  26. W. Soliman, T. Nakano, N. Takada, K. Sasaki, Japanese. J. Appl. Phys. 49, 11R (2010)

    Article  Google Scholar 

  27. E.V. Barmina, A.V. Simakin, G.A. Shafeev, Chem. Phys. Lett. 655, 3538 (2016)

    Google Scholar 

  28. M.T. Lee, D.J. Hwang, R. Greif, C.P. Grigoropoulos, Int. J. Hydrog. Energy 34, 1835 (2009)

    Article  Google Scholar 

  29. J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004)

    Article  Google Scholar 

  30. I.A. Sukhov, G.A. Shafeev, V.V. Voronov, M. Sygletou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 302, 7982 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant (code# 14CTAP-C086566-01-000000) from Technology Advancement Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government. The electron microscope analysis was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Authors appreciate Dr. T. J. Kim (Chemical Engineering Department, Stony Brook University) for discussion on compositional analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Z. & Hwang, D.J. Metal oxide hollow nanoparticles formation by a single nanosecond pulsed laser ablation in liquid. Appl. Phys. A 123, 616 (2017). https://doi.org/10.1007/s00339-017-1222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1222-9

Navigation