Metal and Alloy Nanoparticles Formed by Laser-Induced Nucleation Method

  • Chapter
  • First Online:
High-Energy Chemistry and Processing in Liquids
  • 516 Accesses

Abstract

Tightly focused high-energy femtosecond pulsed laser can create an intense optical field near the focal point. When this intense optical field is formed in the aqueous solution, solvated electrons and radicals are generated by laser-induced photochemical decomposition of water molecules. Due to the strong reducing power of solvated electrons, metal ions in the solution are reduced to form nanoparticles (NPs). In addition, sequential pulsed-laser irradiation causes fragmentation of the formed NPs similar to a scheme of pulsed-laser ablation in liquid, in which the surface of the NPs is negatively charged, resulting in a stable colloidal suspension of NPs without the addition of dispersants. We named this laser-induced physicochemical NP synthesis method as laser-induced nucleation method. By utilizing this technique, we have succeeded in fabricating not only various noble metal NPs but also solid-solution alloy NPs, which are difficult to fabricate by conventional thermal equilibrium methods due to their immiscible nature. The constituent elements in alloy NPs are the uniformly distributed, and the elemental composition reflects the mixing ratio of the ions in the solution. In this chapter, the reactions in the laser-induced NP formation and some examples for metal and solid-solution alloy NPs produced by the laser-induced nucleation method are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, J.W. Limperos, Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 1–4, 64–76 (2014). https://doi.org/10.1016/j.addma.2014.08.005

    Article  Google Scholar 

  2. Y. Sato, M. Tsukamoto, T. Shobu, Y. Funada, Y. Yamashita, T. Hara, M. Sengoku, Y. Sakon, T. Ohkubo, M. Yoshida, N. Abe, In situ X-ray observations of pure-copper layer formation with blue direct diode lasers. Appl. Phys. Sci. 480, 861–867 (2019). https://doi.org/10.1016/j.apsusc.2019.03.057

    Article  CAS  Google Scholar 

  3. Z. Yan, D.B. Chrisey, Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C: Photochem. Rev. 13, 204–223 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.04.004

    Article  CAS  Google Scholar 

  4. R. Yanagihara, T. Asahi, Y. Ishibashi, O. Odawara, H. Wada, Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging. Jpn. J. Appl. Phys. 57(2018). https://doi.org/10.7567/JJAP.57.035001

  5. Y. Ishikawa, Q. Feng, N. Koshizaki, Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media. Appl. Phys. A 99, 797–803 (2010). https://doi.org/10.1007/s00339-010-5745-6

    Article  CAS  Google Scholar 

  6. Y. Ishikawa, T. Sasaki, N. Koshizaki, Submicron-sized boron carbide particles encapsulated in turbostratic graphite prepared by laser fragmentation in liquid medium. J. Nanosci. Nanotechnol. 10, 5467–5470 (2010). https://doi.org/10.1166/jnn.2010.1947

    Article  CAS  PubMed  Google Scholar 

  7. H.Q. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. 49, 6361–6364 (2010). https://doi.org/10.1002/anie.201002963

    Article  CAS  Google Scholar 

  8. A. Pyatenko, H. Wang, N. Koshizaki, Growth mechanism of monodisperse spherical particles under nanosecond pulsed laser irradiation. J. Phys. Chem. C 118, 4495–4500 (2014). https://doi.org/10.1021/jp411958v

    Article  CAS  Google Scholar 

  9. C. Zhao, S. Qu, J. Qiu, C. Zhu, Photoinduced formation of colloidal Au by a nearinfrared femtosecond laser. J. Mater. Res. 18, 1710–1714 (2003). https://doi.org/10.1557/JMR.2003.0235

    Article  CAS  Google Scholar 

  10. T. Nakamura, Y. Mochidzuki, S. Sato, Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. J. Mater. Res. 23, 968–974 (2008). https://doi.org/10.1557/jmr.2008.0115

    Article  CAS  Google Scholar 

  11. B. Tangeysh, K.M. Tibbetts, J.H. Odhner, B.B. Wayland, R.J. Levis, Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: Post-irradiation auto-reduction of aqueous [AuCl4]−. J. Phys. Chem. C 117, 18719–18727 (2013). https://doi.org/10.1021/jp4056494

    Article  CAS  Google Scholar 

  12. J.H. Odhner, K.M. Tibbetts, B. Tangeysh, B.B. Wayland, R.J. Levis, Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4. J. Phys. Chem. C 118, 23986–23995 (2014). https://doi.org/10.1021/jp507873n

    Article  CAS  Google Scholar 

  13. N. Nakashima, K. Yamanaka, M. Saeki, H. Ohba, S. Taniguchi, T. Yatsuhashi, Metal ion reductions by femtosecond laser pulses with micro-joule energy and their efficiencies. J. Photochem. Photobiol. A 319–320, 70–77 (2016). https://doi.org/10.1016/J.JPHOTOCHEM.2015.12.021

    Article  Google Scholar 

  14. K.M. Tibbetts, B. Tangeysh, J.H. Odhner, R.J. Levis, Elucidating strong field photochemical reduction mechanisms of aqueous [AuCl4]−: Kinetics of multiphoton photolysis and radical-mediated reduction. J. Phys. Chem. A 120, 3562–3569 (2016). https://doi.org/10.1021/acs.jpca.6b03163

    Article  CAS  Google Scholar 

  15. V.K. Meader, M.G. John, C.J. Rodrigues, K.M. Tibbetts, Roles of free electrons and H2O2 in the optical breakdown-induced photochemical reduction of aqueous [AuCl4]−. J. Phys. Chem. A 121, 6742−6754 (2017). https://doi.org/10.1021/acs.jpca.7b05370

  16. C.J. Rodrigues, J.A. Bobb, M.G. John, S.P. Fisenko, M.S. El-Shall, K.M. Tibbetts, Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl4]−. Phys. Chem. Chem. Phys. 20, 28465–28475 (2018). https://doi.org/10.1039/C8CP05774E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Belmouaddine, M. Shi, P.-L. Karsenti, R. Meesat, L. Sanche, D. Houde, Dense ionization and subsequent non-homogeneous radical-mediated chemistry of femtosecond laser-induced low density plasma in aqueous solutions: Synthesis of colloidal gold. Phys. Chem. Chem. Phys. 19, 7897–7909 (2017). https://doi.org/10.1039/C6CP08080D

    Article  CAS  PubMed  Google Scholar 

  18. H. Belmouaddine, M. Shi, L. Sanche, D. Houde, Tuning the size of gold nanoparticles produced by multiple filamentation of femtosecond laser pulses in aqueous solutions. Phys. Chem. Chem. Phys. 20, 23403–23413 (2018). https://doi.org/10.1039/C8CP02054J

    Article  CAS  PubMed  Google Scholar 

  19. K. Kurihara, J. Kizling, P. Stenius, J.H. Fendler, Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions. J. Am. Chem. Soc. 105, 2574–2579 (1983). https://doi.org/10.1021/ja00347a011

    Article  CAS  Google Scholar 

  20. D.N. Nikogosyan, A.A. Oraevsky, V.I. Rupasov, Two-photon ionization and dissociation of liquid water by powerful laser UV radiation. Chem. Phys. 77, 131–143 (1983). https://doi.org/10.1016/0301-0104(83)85070-8

    Article  CAS  Google Scholar 

  21. R.A. Crowell, D.M. Bartels, Multiphoton ionization of liquid water with 3.0−5.0 eV photons. J. Phys. Chem. 100, 17940−17949 (1996). https://doi.org/10.1021/jp9610978

  22. A. Reuther, A. Laubereau, D.N. Nikogosyan, Primary photochemical processes in water. J. Phys. Chem. 100, 16794–16800 (1996). https://doi.org/10.1021/jp961462v

    Article  CAS  Google Scholar 

  23. S.L. Chin, S. Lagace, Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl. Opt. 35, 907–911 (1996). https://doi.org/10.1364/AO.35.000907

    Article  CAS  PubMed  Google Scholar 

  24. S. Pommeret, F. Gobert, M. Mostafavi, I. Lampre, J.-C. Mialocq, Femtochemistry of the hydrated electron at decimolar concentration. J. Phys. Chem. A 105, 11400–11406 (2001). https://doi.org/10.1021/jp0123381

    Article  CAS  Google Scholar 

  25. T. Nakamura, Y. Yamazaki, S. Sato, Synthesis of noble metals and their alloy nanoparticles by laser-induced nucleation in a highly intense laser field (2020). https://doi.org/10.14356/kona.2022002

  26. J.-P. Sylvestre, S. Poulin, A. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16864–16869 (2004). https://doi.org/10.1021/jp047134+

    Article  CAS  Google Scholar 

  27. T. Nakamura, K. Takasaki, A. Ito, S. Sato, Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution. Appl. Surf. Sci. 255, 9630–9633 (2009). https://doi.org/10.1016/j.apsusc.2009.04.092

  28. T. Nakamura, H. Magara, Y. Herbani, S. Sato, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A 104, 1021 (2011). https://doi.org/10.1007/s00339-011-6499-5

    Article  CAS  Google Scholar 

  29. Y. Herbani, T. Nakamura, S. Sato, Synthesis of platinum-based binary and ternary alloy nanoparticles in an intense laser field. J. Coll. Int. Sci. 375, 78–87 (2012). https://doi.org/10.1016/j.jcis.2012.02.030

    Article  CAS  Google Scholar 

  30. T. Nakamura, Y. Herbani, S. Sato, Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution. J. Nanopart. Res 14, 785 (2012). https://doi.org/10.1007/s11051-012-0785-9

    Article  CAS  Google Scholar 

  31. M.S.I. Sarker, T. Nakamura, Y. Herbani, S. Sato, Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution. Appl. Phys. A 110, 145–152 (2013). https://doi.org/10.1007/s00339-012-7467-4

    Article  CAS  Google Scholar 

  32. M.S.I. Sarker, T. Nakamura, S. Sato, Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions. J. Mater. Res. 29, 856–864 (2014). https://doi.org/10.1557/jmr.2014.62

    Article  CAS  Google Scholar 

  33. M.S.I. Sarker, T. Nakamura, S. Sato, All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant. J. Nanopart. Res. 17, 259 (2015). https://doi.org/10.1007/s11051-015-3056-8

    Article  CAS  Google Scholar 

  34. M.S.I. Sarker, T. Nakamura, S. Kameoka, Y. Hayasaka, S. Sato, Enhanced catalytic activity of inhomogeneous Rh-based solid-solution alloy nanoparticles. RSC Adv. 9, 38882–38890 (2019). https://doi.org/10.1039/C9RA06167C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Mr. Yuichiro Hayasaka for his help with STEM-EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakamura, T. (2022). Metal and Alloy Nanoparticles Formed by Laser-Induced Nucleation Method. In: Ishikawa, Y., et al. High-Energy Chemistry and Processing in Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-16-7798-4_2

Download citation

Publish with us

Policies and ethics

Navigation