Log in

Scutellaria extract and wogonin inhibit tumor-mediated induction of Treg cells via inhibition of TGF-β1 activity

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A number of studies have implicated tumor-induced Treg cell activity in the sub-optimal response to therapeutic vaccines. Development of neo-adjuvant strategies targeting Treg cells is therefore imperative. Scutellaria extracts or constituent flavonoids have shown encouraging efficacy against various tumors, including gliomas, in both pre-clinical and clinical studies. We report here, for the first time, that Scutellaria ocmulgee leaf extract (SocL) and flavonoid wogonin could inhibit TGF-β1-induced Treg activity in malignant gliomas. F344 rats, subcutaneously transplanted with F98 gliomas, were treated with SocL. There was a significant inhibition of intra-tumoral TGF-β1 and Treg cell frequency as well as peripheral blood TGF-β1 levels in SocL-treated animals compared to the controls. SocL extract and wogonin also inhibited glioma-induced, TGF-β1-mediated Treg activity in vitro. SocL extract and wogonin also inhibited the secretion of IL-10 in Treg culture; whereas the level of IL-2 was either unchanged or marginally enhanced. We also observed an inhibition of Smad-3, GSK-3β and ERK1/2 signaling by SocL and wogonin in Treg cells, while phosphorylation of P38 MAPK was considerably enhanced, indicating that SocL or wogonin could inhibit the T cells’ response to TGF-β1 via modulation of both Smad and non-Smad signaling pathways. Overall, this study suggests that Scutellaria can potentially reverse tumor-mediated immune suppression via inhibition of TGF-β1 secretion as well as via inhibition of T cells’ response to TGF-β1. This may provide an opportunity for develo** a novel adjuvant therapeutic strategy for malignant gliomas, combining Scutellaria with immunotherapy and chemo/radio-therapeutic regimen, which could potentially improve the disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CM:

Conditioned medium

ERK:

Extracellular-regulated kinase

GSK:

Glycogen synthase kinase

nT:

Naïve T cells

IHC:

Immunohistochemistry

SocL:

Scutellaria ocmulgee leaf extract

Treg :

Regulatory T cells

TGF:

Transforming growth factor

References

  1. Vega EA, Graner MW, Sampson JH (2008) Combating immunosuppression in glioma. Future Oncol 4(3):433–442

    Article  PubMed  CAS  Google Scholar 

  2. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111

    Article  PubMed  CAS  Google Scholar 

  3. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  PubMed  CAS  Google Scholar 

  4. Domschke C et al (2009) Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res 69(21):8420–8428

    Article  PubMed  CAS  Google Scholar 

  5. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106

    Article  PubMed  CAS  Google Scholar 

  6. Parajuli P et al (2007) Dendritic cell-based active specific immunotherapy for malignant glioma. Expert Opin Biol Ther 7(4):439–448

    Article  PubMed  CAS  Google Scholar 

  7. Waziri A (2010) Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 21(1):31–42

    Google Scholar 

  8. Fontana A et al (1992) Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol 99(1):1–7

    Article  PubMed  CAS  Google Scholar 

  9. Gajewski TF et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  PubMed  CAS  Google Scholar 

  10. Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146

    PubMed  Google Scholar 

  11. Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195(11):1499–1505

    Article  PubMed  CAS  Google Scholar 

  12. Inge TH et al (1992) Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1. Cancer Res 52(6):1386–1392

    PubMed  CAS  Google Scholar 

  13. Pyzik M, Piccirillo CA (2007) TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol 82(2):335–346

    Article  PubMed  CAS  Google Scholar 

  14. Selvaraj RK, Geiger TL (2007) A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J Immunol 178(12):7667–7677

    PubMed  CAS  Google Scholar 

  15. Liu VC et al (2007) Tumor evasion of the immune system by converting CD4+ CD25− T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178(5):2883–2892

    PubMed  CAS  Google Scholar 

  16. Lehe C et al (2008) The Wilms’ tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res 68(15):6350–6359

    Article  PubMed  CAS  Google Scholar 

  17. Bohling SD, Allison KH (2008) Immunosuppressive regulatory T cells are associated with aggressive breast cancer phenotypes: a potential therapeutic target. Mod Pathol 21(12):1527–1532

    Article  PubMed  CAS  Google Scholar 

  18. Strauss L et al (2007) A unique subset of CD4+ CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13(15 Pt 1):4345–4354

    Article  PubMed  CAS  Google Scholar 

  19. Grauer OM et al (2007) CD4+ FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105

    Article  PubMed  CAS  Google Scholar 

  20. Perez N et al (2009) A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One 4(11):e7668

    Article  PubMed  Google Scholar 

  21. Kotliarova S et al (2008) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68(16):6643–6651

    Article  PubMed  CAS  Google Scholar 

  22. Humphries W et al (2010) The role of tregs in glioma-mediated immunosuppression: potential target for intervention. Neurosurg Clin N Am 21(1):125–137

    Article  PubMed  Google Scholar 

  23. Scheck AC et al (2006) Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med 6:27

    Article  PubMed  Google Scholar 

  24. Kyo R et al (1998) Baicalin and baicalein, constituents of an important medicinal plant, inhibit intracellular Ca2+ elevation by reducing phospholipase C activity in C6 rat glioma cells. J Pharm Pharmacol 50(10):1179–1182

    Article  PubMed  CAS  Google Scholar 

  25. Lee SW et al (2005) Beneficial effect of flavonoid baicalein in cisplatin-induced cell death of human glioma cells. Neurosci Lett 382(1–2):71–75

    Article  PubMed  CAS  Google Scholar 

  26. Parajuli P et al (2011) Delayed growth of glioma by Scutellaria flavonoids involve inhibition of Akt, GSK-3 and NF-kappaB signaling. J Neurooncol 101(1):15–24

    Article  PubMed  Google Scholar 

  27. Parajuli P et al (2009) In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 75(1):41–48

    Article  PubMed  CAS  Google Scholar 

  28. Rugo H et al (2007) Phase I trial and antitumor effects of BZL101 for patients with advanced breast cancer. Breast Cancer Res Treat 105(1):17–28

    Article  PubMed  CAS  Google Scholar 

  29. Perez AT et al (2010) A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Res Treat 120(1):111–118

    Article  PubMed  Google Scholar 

  30. Mantena SK, Roy AM, Katiyar SK (2005) Epigallocatechin-3-gallate inhibits photocarcinogenesis through inhibition of angiogenic factors and activation of CD8+ T cells in tumors. Photochem Photobiol 81(5):1174–1179

    Article  PubMed  CAS  Google Scholar 

  31. Song CK et al (2007) Chemotherapy enhances CD8(+) T cell-mediated antitumor immunity induced by vaccination with vaccinia virus. Mol Ther 15(8):1558–1563

    Article  PubMed  CAS  Google Scholar 

  32. Kang TH et al (2007) Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res 67(2):802–811

    Article  PubMed  CAS  Google Scholar 

  33. Guo TL et al (2001) Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J Nutr 131(12):3251–3258

    PubMed  CAS  Google Scholar 

  34. Peng XD et al (2009) Correlation between anti-fibrotic effect of baicalin and serum cytokines in rat hepatic fibrosis. World J Gastroenterol 15(37):4720–4725

    Article  PubMed  CAS  Google Scholar 

  35. Zhou XM et al (2009) Inhibitory effects of citrus extracts on the experimental pulmonary fibrosis. J Ethnopharmacol 126(1):143–148

    Article  PubMed  CAS  Google Scholar 

  36. Du G et al (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res 69(7):3205–3212

    Article  PubMed  CAS  Google Scholar 

  37. Bergmann C et al (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67(18):8865–8873

    Article  PubMed  CAS  Google Scholar 

  38. Fantini MC et al (2007) In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc 2(7):1789–1794

    Article  PubMed  CAS  Google Scholar 

  39. Johnson LA, Sampson JH (2010) Immunotherapy approaches for malignant glioma from 2007 to 2009. Curr Neurol Neurosci Rep 10(4):259–266

    Article  PubMed  CAS  Google Scholar 

  40. Tada T et al (1991) Transforming growth factor-beta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 146(3):1077–1082

    PubMed  CAS  Google Scholar 

  41. Wei WZ et al (2005) Concurrent induction of antitumor immunity and autoimmune thyroiditis in CD4+ CD25+ regulatory T cell-depleted mice. Cancer Res 65(18):8471–8478

    Article  PubMed  CAS  Google Scholar 

  42. Jacob JB et al (2009) Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. J Immunol 182(9):5873–5881

    Article  PubMed  CAS  Google Scholar 

  43. Wang CZ, et al (2009) Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells. Phytomedicine 17(1):63–68

    Google Scholar 

  44. Huang WH, Lee AR, Yang CH (2006) Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem 70(10):2371–2380

    Article  PubMed  CAS  Google Scholar 

  45. Nijveldt RJ et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425

    PubMed  CAS  Google Scholar 

  46. Lin CC, Shieh DE (1996) The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am J Chin Med 24(1):31–36

    Article  PubMed  CAS  Google Scholar 

  47. Burdette-Radoux S et al (2004) Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Invest New Drugs 22(3):315–322

    Article  PubMed  CAS  Google Scholar 

  48. Zelenskaya KL et al (2005) Stress-inducing effect of hypoxia of different origin and its correction with Inula Helenium L. tincture. Bull Exp Biol Med 139(4):414–417

    Article  PubMed  CAS  Google Scholar 

  49. Enomoto R et al (2007) Wogonin prevents immunosuppressive action but not anti-inflammatory effect induced by glucocorticoid. Ann N Y Acad Sci 1095:412–417

    Article  PubMed  CAS  Google Scholar 

  50. Chiu JH et al (2002) Tumor necrosis factor-producing activity of wogonin in RAW 264.7 murine macrophage cell line. Planta Med 68(11):1036–1039

    Article  PubMed  CAS  Google Scholar 

  51. Rubtsov YP, Rudensky AY (2007) TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7(6):443–453

    Article  PubMed  CAS  Google Scholar 

  52. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    Article  PubMed  CAS  Google Scholar 

  53. Park IK, Letterio JJ, Gorham JD (2007) TGF-beta 1 inhibition of IFN-gamma-induced signaling and Th1 gene expression in CD4+ T cells is Smad3 independent but MAP kinase dependent. Mol Immunol 44(13):3283–3290

    Article  PubMed  CAS  Google Scholar 

  54. Lu L et al (2010) Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol 184(8):4295–4306

    Article  PubMed  CAS  Google Scholar 

  55. Conery AR et al (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 6(4):366–372

    Article  PubMed  CAS  Google Scholar 

  56. Hua F et al (2010) Glycogen synthase kinase-3beta negatively regulates TGF-beta1 and Angiotensin II-mediated cellular activity through interaction with Smad3. Eur J Pharmacol 644(1–3):17–23

    Article  PubMed  CAS  Google Scholar 

  57. Voloshenyuk TG et al (2011) Induction of cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55(1):90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge research support from the USDA-NIFA (GEOX-2008-02989) and Fund for Medical Research and Education (FMRE). The Microscopy, Imaging and Cytometry Resources Core is supported, in part, by NIH Center grant P30CA22453 to The Karmanos Cancer Institute, Wayne State University and the Perinatology Research Branch of the National Institutes of Child Health and Development, Wayne State University. We are grateful to Dr. Larry Tait for the invaluable help with fluorescent IHC. We are thankful to Dr. Indrajit Sinha for his critical evaluation of the manuscript and also for his help with the preparation of the Figures.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prahlad Parajuli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2011_1130_MOESM1_ESM.ppt

Supplementary Figure S1. SocL preferentially inhibits intra-tumoral FOXP3 + T reg cell activity without affecting total T-cell infiltration. F344 rats were subcutaneously transplanted with 1 × 106 F98 glioma cells on the right flank. SocL administration was performed as described. Rats were euthanized on day 29; the tumor was resected and processed for IHC, as described in the ‘Methods’ section, to determine the presence of FOXP3+ and CD3+ T cells. Result shown is from one representative paraffinized glioma specimen out of three studied. The micrographs were imaged at 200× magnifications. (PPT 12789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandawate, S., Williams, L., Joshee, N. et al. Scutellaria extract and wogonin inhibit tumor-mediated induction of Treg cells via inhibition of TGF-β1 activity. Cancer Immunol Immunother 61, 701–711 (2012). https://doi.org/10.1007/s00262-011-1130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1130-3

Keywords

Navigation