Log in

Delayed growth of glioma by Scutellaria flavonoids involve inhibition of Akt, GSK-3 and NF-κB signaling

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Plants of the genus Scutellaria constitute one of the common components of Eastern as well as traditional American medicine against various human diseases, including cancer. In this study, we examined the in vivo anti-glioma activity of a leaf extract of Scutellaria ocmulgee (SocL) while also exploring their potential molecular mechanisms of action. Oral administration of SocL extract delayed the growth of F98 glioma in F344 rats, both in intracranial and subcutaneous tumor models. Immunohistochemistry revealed inhibition of Akt, GSK-3α/β and NF-κB phosphorylation in the subcutaneous tumors following treatment with Scutellaria. The SocL extract as well as the constituent flavonoid wogonin also showed dose- and time-dependent inhibition of Akt, GSK-3α/β and NF-κB in F98 cell cultures in vitro, as determined by western blot analysis. Pharmacologic inhibitors of PI3K and NF-κB also significantly inhibited the in vitro proliferation of F98 glioma cells, indicating the key role of these signaling molecules in the growth of malignant gliomas. Transfection of F98 cells with constitutively active mutant of AKT (AKT/CA), however, did not significantly reverse Scutellaria-mediated inhibition of proliferation, indicating that Scutellaria flavonoids either directly inhibited Akt kinase activity or acted downstream of Akt. In vitro Akt kinase assay demonstrated that the SocL extract or wogonin could indeed bind to Akt and inhibit its kinase activity. This study provides the first in vivo evidence and mechanistic support for anti-glioma activity of Scutellaria flavonoids and has implications in potential usage of Scutellaria flavonoids in adjuvant therapy for malignant tumors, including gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Constitutively active

DN:

Dominant negative (mutant)

GSK:

Glycogen synthase kinase

NF-κB:

Nuclear factor-κB

SocL:

Scutellaria ocmulgee leaf (extract)

References

  1. Merchant TE, Pollack IF, Loeffler JS (2010) Brain tumors across the age spectrum: biology, therapy, and late effects. Semin Radiat Oncol 20(1):58–66

    Article  PubMed  Google Scholar 

  2. Parajuli P et al (2007) Dendritic cell-based active specific immunotherapy for malignant glioma. Expert Opin Biol Ther 7(4):439–448

    Article  CAS  PubMed  Google Scholar 

  3. Huang WH, Lee AR, Yang CH (2006) Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem 70(10):2371–2380

    Article  CAS  PubMed  Google Scholar 

  4. Nijveldt RJ et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425

    CAS  PubMed  Google Scholar 

  5. Awad R et al (2003) Phytochemical and biological analysis of skullcap (Scutellaria lateriflora L.): a medicinal plant with anxiolytic properties. Phytomedicine 10(8):640–649

    Article  CAS  PubMed  Google Scholar 

  6. Ernst E (2006) Herbal remedies for anxiety—a systematic review of controlled clinical trials. Phytomedicine 13(3):205–208

    Article  CAS  PubMed  Google Scholar 

  7. Armstrong TS, Gilbert MR (2008) Use of complementary and alternative medical therapy by patients with primary brain tumors. Curr Neurol Neurosci Rep 8(3):264–268

    Article  PubMed  Google Scholar 

  8. Chung H et al (2008) Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer 122(4):816–822

    Article  CAS  PubMed  Google Scholar 

  9. Baumann S et al (2008) Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 111(4):2354–2363

    Article  CAS  PubMed  Google Scholar 

  10. Rugo H et al (2007) Phase I trial and antitumor effects of BZL101 for patients with advanced breast cancer. Breast Cancer Res Treat 105(1):17–28

    Article  CAS  PubMed  Google Scholar 

  11. Scheck AC et al (2006) Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med 6:27

    Google Scholar 

  12. Parajuli P et al (2009) In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 75(1):41–48

    Article  CAS  PubMed  Google Scholar 

  13. Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35(1):57–68

    Article  CAS  PubMed  Google Scholar 

  14. Shen SC et al (2006) Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: differential inhibitory effects of flavonoids. Neuroscience 140(2):477–489

    Article  CAS  PubMed  Google Scholar 

  15. Fas SC et al (2006) Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood 108(12):3700–3706

    Article  CAS  PubMed  Google Scholar 

  16. Chen LG et al (2008) Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res 52(11):1349–1357

    Article  CAS  PubMed  Google Scholar 

  17. Zhang HW et al (2008) Wogonin induced differentiation and G1 phase arrest of human U-937 leukemia cells via PKCdelta phosphorylation. Eur J Pharmacol 591(1–3):7–12

    Article  CAS  PubMed  Google Scholar 

  18. Mathieu D et al (2007) Standardization and detailed characterization of the syngeneic Fischer/F98 glioma model. Can J Neurol Sci 34(3):296–306

    PubMed  Google Scholar 

  19. Kim HS et al (2002) Regulation of angiogenesis by glycogen synthase kinase-3beta. J Biol Chem 277(44):41888–41896

    Article  CAS  PubMed  Google Scholar 

  20. Suhara T et al (2002) Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. Mol Cell Biol 22(2):680–691

    Article  CAS  PubMed  Google Scholar 

  21. Mathupala SP, Parajuli P, Sloan AE (2004) Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 55(6):1410–1419 (discussion 1419)

    Article  PubMed  Google Scholar 

  22. Chinni SR, Sarkar FH (2002) Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin Cancer Res 8(4):1228–1236

    CAS  PubMed  Google Scholar 

  23. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719

    Google Scholar 

  24. Abd El Mohsen MM et al (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33(12):1693–1702

    Article  CAS  PubMed  Google Scholar 

  25. Peng HW et al (1998) Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 714(2):369–374

    Article  CAS  PubMed  Google Scholar 

  26. Staal SP, Hartley JW, Rowe WP (1977) Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA 74(7):3065–3067

    Article  CAS  PubMed  Google Scholar 

  27. Castellino RC, Durden DL (2007) Mechanisms of disease: the PI3K-Akt-PTEN signaling node–an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol 3(12):682–693

    Article  CAS  PubMed  Google Scholar 

  28. Cheng JQ et al (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24(50):7482–7492

    Article  CAS  PubMed  Google Scholar 

  29. Kubiatowski T et al (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95(3):480–488

    Article  CAS  PubMed  Google Scholar 

  30. Hennessy BT et al (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    Article  CAS  PubMed  Google Scholar 

  31. Korur S et al (2009) GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4(10):e7443

    Google Scholar 

  32. Miyashita K et al (2009) Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin Cancer Res 15(3):887–897

    Article  CAS  PubMed  Google Scholar 

  33. Kotliarova S et al (2008) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68(16):6643–6651

    Article  CAS  PubMed  Google Scholar 

  34. Ozes ON et al (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82–85

    Article  CAS  PubMed  Google Scholar 

  35. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401(6748):86–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge research grant from the Fund for Medical Research and Education (FMRE), to PP and the USDA-CSREES Research Project # 2008-02492 (Award # 2008-38814-04737) to NJ (PD), PP and AKY (Co-PD’s). We are grateful to Dr. Kenneth Walsh, University of Boston, MA for kindly providing us with the AKT plasmid constructs. We thank Chao (Becky) Wong for technical assistance; Dr. Yimin Shen for help with MRI imaging; and Brandon Parker for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prahlad Parajuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parajuli, P., Joshee, N., Chinni, S.R. et al. Delayed growth of glioma by Scutellaria flavonoids involve inhibition of Akt, GSK-3 and NF-κB signaling. J Neurooncol 101, 15–24 (2011). https://doi.org/10.1007/s11060-010-0221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0221-x

Keywords

Navigation