Log in

Geosmithia Fungi are Highly Diverse and Consistent Bark Beetle Associates: Evidence from their Community Structure in Temperate Europe

  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 11 March 2008

Abstract

Geosmithia spp. (Ascomycota: Hypocreales) are little-studied, dry-spored fungi that occur in galleries built by many phloeophagous bark beetles. This study mapped the distribution and environmental preferences of Geosmithia species occurring in galleries of temperate European bark beetles. One hundred seven host tree samples of 16 tree species infested with 23 subcortical insect species were collected from across Europe during the years 1997–2005. Over 600 Geosmithia isolates from the beetles were sorted into 17 operational taxonomic units (OTUs) based on their phenotype similarity and phylogeny of internal transcribed spacer (ITS) region of rDNA (ITS1-5.8S-ITS2). The OTUs represent six known species and eight undescribed taxa. Ninety-two samples infested with subcortical insects were characterized by the presence/absence of OTUs and the similarity among the samples was evaluated. Geographically distant populations of the same beetle species host relatively uniform Geosmithia communities across large geographic areas (ranging from southern Bulgaria to the Czech Republic). This suggests effective dispersal of Geosmithia spp. by bark beetles. Clustering of similar samples in ordination analysis is correlated predominantly with the isolation source (bark beetles and their respective feeding plant), but not with their geographical origin. The composition of the Geosmithia OTU community of each bark beetle species depends on the degree of isolation of the species’ niches. Thus, Geosmithia communities associated with regularly co-occurring bark beetle species are highly similar. The similarity decreases with decreasing frequency of beetle species’ co-occurrence, a pattern resembling that of entomochoric ophiostomatoid fungi. These findings suggest that: 1) communities of Geosmithia spp. are vector-specific; 2) at least in some cases, the association between Geosmithia OTUs and bark beetles may have been very stable and symbioses are likely to be a fundamental factor in the speciation of Geosmithia fungi; and 3) that even nonsticky spores of Geosmithia are suitable for maintaining an insect–fungus association, contrary to previous hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Barras, SJ (1972) Improved White’s solution for surface sterilization of Dendroctonus frontalis. J Econ Entomol 65: 1504

    PubMed  CAS  Google Scholar 

  2. Blackwell, M (1994) Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia 86: 1–17

    Article  Google Scholar 

  3. Brändle, M, Brandl, R (2001) Species richness of insect and mites on trees: expanding Southwood. J Anim Ecol 70: 491–504

    Article  Google Scholar 

  4. Burakowski, B, Mroczkowski, M, Stefańska, J (1992) Chrz1szcze—Coleoptera, Ryjkowcowate prócz ryjkowców—Curculionoidea prócz Curculionidae, Katalog Fauny Polski 51 (Pt 23, fasc 18). Muzeum i instytut zoologii PAN, Warszawa

    Google Scholar 

  5. Cannon, PF, Simmons, CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama forest reserve, Guyana. Mycologia 94: 2110–2220

    Article  Google Scholar 

  6. Čížková, D, Šrůtka, P, Kolařík, M, Kubátová, A, Pažoutová, S (2005) Assessing the pathogenic effect of Fusarium, Geosmithia and Ophiostoma fungi from broad-leaved trees. Fol Microbiol 50: 59–62

    Google Scholar 

  7. Doganlar, M, Schopf, R (1984) Some biological aspects of the European oak bark beetle, Scolytus intricatus (Ratz) (Col, Scolytidae) in the northern parts of Germany (BRD). Z Angew Entomol 97: 153–162

    Google Scholar 

  8. Francke-Grosmann, H (1967) Ectosymbiosis in wood-inhabiting beetles. In: Henry SM (Ed.) Symbiosis. Academic Press, New York, pp 141–205

    Google Scholar 

  9. Freitag, H (1962) Einführung in die Biogeographie von Mitteleuropa unter besonderer Berücksichtigung von Deutschland. G. Fischer Stuttgart, Germany

    Google Scholar 

  10. Furniss, MM, Harvey, AE, Solheim, H (1990) Transmission of Ophiostoma ips (Ophiostomatales, Ophiostomataceae) by Ips pini (Coleoptera, Scolytidae) to ponderosa pine in Idaho. Ann Entomol Soc Am 88: 653–660

    Google Scholar 

  11. Gebhardt, H, Begerow, D, Oberwinkler, F (2004) Identification of the ambrosia fungus of Xyleborus monographus and X. dryographus (Coleoptera: Curculionidae, Scolytinae). Mycological Progress 3: 95–102

    Article  Google Scholar 

  12. Harding, S (1989) The influence of mutualistic blue-stain fungi on bark beetle population dynamics. Royal Veterinary and Agricultural University Copenhagen, Copenhagen.

    Google Scholar 

  13. Harrington, TC, Rizzo, DM (1999) Defining species in fungi. In: Worrall JJ (Ed.) Structure and dynamics of fungal populations. Kluwer Academic Press, Dordrecht, Netherlands, pp 43–71

    Google Scholar 

  14. Harrington, TC (2005) Ecology and evolution of mycetophagous bark beetles and their fungal partners. In: Vega, FE, Blackwell, M (Eds.) Insect-fungal association, ecology and evolution. Oxford university press, New York, pp 257–291

    Google Scholar 

  15. Huelsenbeck, JP, Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinform 17: 754–755

    Article  CAS  Google Scholar 

  16. Jankowiak, R, Hilszczanski, J (2005) Ophiostomatoid, fungi associated with Ips typographus (L.) on Picea abies [(L.) H. Karst.] and Pinus sylvestris L. in north-eastern Poland. Acta Soc Botan Polon 74: 345–350

    Google Scholar 

  17. Kennedy, CEJ, Southwood, TRE (1984) The number of species of insects associated with British trees: a re-analysis. J Anim Ecol 53: 455–478

    Article  Google Scholar 

  18. Kirisits, T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F (Ed.) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers, pp 181–235

  19. Kirschner, R (1998) Diversität Mit Borkenkäfern Assoziierter Filamentöser Mikropilze. Fakultät für Biologie. Eberhard-Karls Universität, Tübingen, p. 573.

    Google Scholar 

  20. Kirschner, R (2001) Diversity of filamentous fungi in bark beetle galleries in Central Europe. In: Misra, JK, Horn, BW (Eds.) In Trichomycetes and other fungal groups: Professor Robert W Lichtwardt Commemoration Volume Science Publishers, Enfield, (NH), USA, pp 175–196

  21. Kirschner, R (2003) Two new species of Pyxidiophora associated with bark beetles in Europe. Mycological Progress 2: 209–218

    Article  Google Scholar 

  22. Kolařík, M, Kubátová, A, Pažoutová, S, Šrůtka, P (2004) Morphological and molecular characterisation of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol Res 108: 1053–1069

    Article  PubMed  Google Scholar 

  23. Kolařík, M, Kubátová, A, Čepička, I, Pažoutová, S, Šrůtka, P (2005) A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycol Res 109: 1323–1336

    Article  PubMed  CAS  Google Scholar 

  24. Kolařík, M (2006) Host preference, taxonomy, diversity and host range of fungi associated with bark beetles with an emphasis on the genus Geosmithia in temperate Europe. Faculty of Science, Charles University in Prague, p. 133.

    Google Scholar 

  25. Kolařík, M, Sláviková, E, Pažoutová, S (2006) The taxonomic and ecological characterization of the clinically important heterobasiodiomycete Fugomyces cyanescens and its association with bark beetles. Czech Mycol 58: 81–98

    Google Scholar 

  26. Kolařík, M, Stodůlková, E, Šulc, P, Kuzma, M, Man, P, Flieger, M, Křesinová, Z (2006) Secondary metabolites in insect associated Geosmithia species: polyhydroxylated anthraquinones of G. lavendula and perspectives of future work. Book of abstracts; 10th International symposioum on the Genetics of Industrial Microorganisms, Prague, p. 181.

  27. Kubátová, A, Novotný, D, Prášil, K (1999) Bělokaz dubový jako přenašeě mikroskopických hub [Oak bark beetle as vector of microscopic fungi]. In: Jankovský, L, Krejčíř, R, Antonín, V (Eds) Houby a les [Fungi and forest], Brno, pp 235–236.

  28. Kubátová, A, Kolařík, M, Prášil, K, Novotný, D (2004) Bark beetles and their galleries: well-known niche for little known fungi, case of Geosmithia. Czech Mycol 55: 1–18

    Google Scholar 

  29. Kumar, S, Tamura, K, Nei, M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150–163

    Article  PubMed  CAS  Google Scholar 

  30. Lodge, DJ (1997) Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv 6: 681–688

    Article  Google Scholar 

  31. Malloch, D, Blackwell, M (1993) Dispersal biology of the ophiostomatoid fungi. In: Wingfield, MJ, Seifert, KA, Webber, JF (Eds.) Ophiostoma and Ceratocystis: taxonomy, ecology and phathogenicity. ABS Press, St. Paul, MN

    Google Scholar 

  32. Mueller, UG, Gerardo, NM, Aanen, DK, Six, DL, Schultz, TR (2005) The evolution of agriculture in insects. Annual Review of Ecology Evolution and Systematics 36: 563–595

    Article  Google Scholar 

  33. Pfeffer, A (1994) Zentral-und westpaläarktische Borken-und Kernkäfer (Coleoptera: Scolytidae, Platypodidae)

  34. Pfeffer, A, Knížek, M (1996) Coleoptera: Curculionoidea 2. In: Rozkošný R, Vaňhara, J (Eds.) Terrestrial Invertebrates of the Palava Biosphere Reserve of UNESCO, III. Fol Fac Sci Nat Univ Masarykianae Brunensis, Biologia, Brno, pp 601–607

  35. Pitt, JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  36. Pitt, JI (1979) Geosmithia gen. nov. for Penicillium lavendulum and related species. Can J Bot 57: 2021–2030

    Article  Google Scholar 

  37. Pitt, JI, Hocking, AD (1997) Fungi and Food Spoilage, 2nd ed. Blackie Academic and Professional, London

    Google Scholar 

  38. Schroers, HJ, Geldenhuis, MM, Wingfield, MJ, Schoeman, MH, Yen, YF, Shen, WC, Wingfield, BD (2005) Classification of the guava wilt fungus Myxosporium psidii, the palm pathogen Gliocladium vermoesenii and the persimmon wilt fungus Acremonium diospyri in Nalanthamala. Mycologia 97: 375–395

    Article  PubMed  CAS  Google Scholar 

  39. Six, DL, Paine, TD (1999) Phylogenetic comparison of ascomycete mycangial fungi and Dendroctonus bark beetles (Coleoptera: Scolytidae). Ann Entomol Soc Am 92: 159–166

    Google Scholar 

  40. Six, DL (2003) Bark beetle–fungus symbioses. In: Bourtzis K, Miller TA (Eds.) Insect Symbiosis Contemporary Topics in Entomology. CRC Press, Boca Raton, London, New York, Washington D. C., pp 97–114

    Google Scholar 

  41. Solheim, H (1993) Fungi associated with the spruce bark beetle Ips typographus in an endemic area in Norway. Scand J For Res 8: 118–122

    Article  Google Scholar 

  42. Solheim, H (1993) Ecological aspects of fungi associated with the spruce bark beetle Ips typographus in Norway. In: Wingfield MJ, Seifert KA, Webber JF (Eds.) Ceratocystis and Ophiostoma Taxonomy, Ecology and Pathogenicity. American Phytopathological Society, St Paul, MN, pp 235–242

    Google Scholar 

  43. ter Braak, CJF, Šmilauer, P (2002) Canoco reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, NY, USA

  44. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25: 4876–4882

    Article  PubMed  CAS  Google Scholar 

  45. Whitney, HS (1982) Relationships between bark beetles and symbiotic organisms. In: Mitton JB, Sturgeon KB (Eds.) Bark beetles in North American conifers. University of Texas Press, Austin, pp 183–211

    Google Scholar 

  46. Wood, SL (1986) A reclassification of the genera of Scolytidae (Coleoptera). Gt Basin Nat Mem 10: 1–126

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Czech Sciences Foundation 522/02/1206, 206/03/H137, by the Ministry of Education, Youth and Sports institutional project MSM 0021620828, Institutional Research Concept AV0Z5020903 and grant No. MSM 6007665801, by the Grant Agency of the Czech Republic grant No. 206/03/H034, and by the Charles University Grant Agency grant 205/2004. We kindly thank Miloš Knížek (Forestry and Game Management Research Institute, Jíloviště-Strnady, Prague) for the bark beetle identifications. Special thanks go to David Novotný (Research Institute of Crop Production, Prague) for providing Geosmithia isolates from Ips typographus, to K. Nováková, R. Kirschner, P. Šrůtka, and many others for providing bark beetle samples or Geosmithia isolates. We also thank three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kolařík.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00248-008-9371-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolařík, M., Kubátová, A., Hulcr, J. et al. Geosmithia Fungi are Highly Diverse and Consistent Bark Beetle Associates: Evidence from their Community Structure in Temperate Europe. Microb Ecol 55, 65–80 (2008). https://doi.org/10.1007/s00248-007-9251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9251-0

Keywords

Navigation