Log in

Factors affecting the mechanics of carbonized wood: literature review

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The influence of wood properties, such as basic density, moisture content, dimensions of the pieces, chemical composition, anatomy, as well as parameters of the carbonization process, like final peak temperature, heating rate and pressure on the mechanics of charcoal used as a reductant in iron blast furnaces, was reviewed. The quality of charcoal for steelmaking is directly related to the wood quality from which it originated. The adoption of a homogeneous raw material allows a more regular behavior of the furnace, thus increasing the efficiency of the reduction process and consequently decreasing product consumption. The control of pyrolysis parameters such as the final temperature, the heating rate and the pressure contributes to an increase in the mechanical resistance of charcoal, thus improving the efficiency of the thermoreducer and contributing to a better use of energetic forests. A significant increase in the mechanics of charcoal is achieved by carbonization at a final temperature above 500 °C. Future research should focus on operating conditions of pressure and heating rate as a means of optimizing the mechanics of charcoal from wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ABNT (1982) NBR 7402: charcoal—granulometric determination—method of test. Associação Brasileira de Normas Técnicas, Rio de Janeiro (in Portuguese)

    Google Scholar 

  • ABNT (1984) NBR 7416: charcoal—determination of breakage index. Drop test. Associação Brasileira de Normas Técnicas, Rio de Janeiro (in Portuguese)

    Google Scholar 

  • ABNT (1985) NBR 8740: charcoal—determination of rupture and abrasion index—method of test. Associação Brasileira de Normas Técnicas, Rio de Janeiro (in Portuguese)

    Google Scholar 

  • Andrade AM, Della Lucia R (1995) Evaluation of wood charcoal hygroscopicity and its effects on the compression resistance of charcoal. Floresta e Ambiente 2:19–26 (in Portuguese)

    Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  • Antal MJ, Mok WSL (1990) Review of methods for improving the yield of charcoal from biomass. Energ Fuel 4(3):221–225

    Article  CAS  Google Scholar 

  • Antal MJ, Croiset E, Daí X, Almeida C, Mok WSL, Norberg N (1996) High-yield biomass charcoal. Energ Fuel 10(3):652–658

    Article  CAS  Google Scholar 

  • Assis PS, Martins WB, Vieira CB (2003) Advances in pulverized coal injection for application in blast furnace. Rem: Revista da Escola de Minas 56(4):281–285 (in Portuguese)

    Google Scholar 

  • Babich A, Senk D, Fernandez M (2010) Charcoal behavior by its injection into the modern blast furnace. ISIJ Int 50(1):81–88

    Article  CAS  Google Scholar 

  • Baileys RT, Blankenhorn PR (1982) Calorific and porosity development in carbonized wood. Wood Sci 15(1):19–28

    Google Scholar 

  • Bartkowiak M, Zakrzewski R (2004) Thermal degradation of lignins isolated from wood. J Therm Anal Calorim 77(1):295–304

    Article  CAS  Google Scholar 

  • Beall FC, Blankenhorn PR, Moore GR (1974) Carbonized wood—physical properties and use as an SEM preparation. Wood Sci 6:212–219

    Google Scholar 

  • Blankenhorn PR, Jenkins GM, Kline DE (1972) Dynamic mechanical properties and microstructure of some carbonized hardwoods. Wood Fiber 4(3):212–224

    CAS  Google Scholar 

  • Blankenhorn PR, Kline DE, Beall FC (1973) Dynamic mechanical behavior of carbonized black cherry wood (Prunus serotina ehrh.). Carbon 11(6):603–611

    Article  CAS  Google Scholar 

  • Blankenhorn PR, Barnes DP, Kline DE, Murphey WK (1978) Porosity and pore size distribution of black cherry carbonized in an inert atmosphere. Wood Sci 11(1):23–29

    Google Scholar 

  • Briane D, Doat J (1985) Technical guide of the carbonization: the production of charcoal. EDISUD, Aix-en-Provence (in French)

    Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    Article  CAS  Google Scholar 

  • Brito JO (1990) Principles of production and utilization of charcoal. Forestry Documents 9:1–19 (in Portuguese)

    Google Scholar 

  • Brito JO, Barrichelo LEG (1980) Correlations between physical and chemical characteristics of wood and charcoal production: 2. density of wood × density of charcoal. Tech Circ IPEF 20:121–126 (in Portuguese)

    Google Scholar 

  • Chatterjee A (2010) Hot metal production by smelting reduction of iron oxide. PHI Learning Pvt Ltd, New Delhi

    Google Scholar 

  • Chrzazvez J, Théry-Parisot I, Fiorucci G, Terral JF, Thibaut B (2014) Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. J Archaeol Sci 44:30–42

    Article  CAS  Google Scholar 

  • Coutinho AR, Ferraz ESB (1988) Determination of charcoal friability in function of the diameter of trees and carbonization temperature. Tech Circ IPEF 38:33–37 (in Portuguese)

    Google Scholar 

  • Doat J, Petroff G (1975) The carbonization of tropical woods: laboratory tests and industrial prospects. Revue Bois et Forêts des Tropiques 159:55–71 (in French)

    Google Scholar 

  • Emmerich FG, de Sousa JC, Torriani IL, Luengo CA (1987) Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut. Carbon 25(3):417–424

    Article  CAS  Google Scholar 

  • Ferrari PE, Rezende MC (1998) Polymeric carbon: processing and application. Polímeros Ciência e Tecnologia 8(4):22–30 (in Portuguese)

    Article  CAS  Google Scholar 

  • Gomes PA, Oliveira JB (1980) Theory of wood carbonization. In: Use of wood as bioenergy. Fundação Centro Tecnológico de Minas Gerais (CETEC), vol 1. pp 27–42. (in Portuguese)

  • Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass. Thesis, The Norwegian University of Science and Technology

  • Gupta RC (2003) Woodchar as a sustainable reductant for ironmaking in the 21st century. Miner Process Extr Metall Rev 24(3–4):203–231

    Article  CAS  Google Scholar 

  • Jenkins GM, Kawamura K (1976) Polymeric carbons-carbon fibre, glass and char. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Juvillar JB (1979) The wood carbonization and its reflections on charcoal quality: wood quality. Tech Circ IPEF 64:1–6 (in Portuguese)

    Google Scholar 

  • Khezami L, Chetouani A, Taouk B, Capart R (2005) Production and characterization of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Technol 157(1–3):48–56

    Article  CAS  Google Scholar 

  • Kim NH, Hanna RB (2006) Morphological characteristics of Quercus variabilis charcoal prepared at different temperatures. Wood Sci Technol 40(5):392–401

    Article  CAS  Google Scholar 

  • Klar M (1925) The technology of wood distillation. Chapman & Hall, London

    Google Scholar 

  • Krzesińska M, Zachariasz J (2007) Correlation between the carbonization temperature and the physical parameters of porous carbons derived from Yucca flaccida. J Phys Conf Ser 80:209–215

    Google Scholar 

  • Kumar M, Gupta RC (1993) Influence of carbonization conditions on physical properties of Acacia and Eucalyptus wood chars. T Indian I Metals 46(6):345–352

    CAS  Google Scholar 

  • Kwon SM, Kim NH, Cha DS (2009) An investigation on the transition characteristics of the wood cell walls during carbonization. Wood Sci Technol 43(5–6):487–498

    Article  CAS  Google Scholar 

  • Lancelotti C, Madella M, Ajithprasad P, Petrie C (2010) Temperature, compression and fragmentation: an experimental analysis to assess the impact of taphonomic processes on charcoal preservation. Archaeol Anthropol Sci 2:307–320

    Article  Google Scholar 

  • Lobo AO, Martin AA, Antunes EF, Trava-Airoldi VJ, Corat EJ (2005) Characterization of carbonaceous materials by Raman spectroscopy. Revista Brasileira de Aplicações de Vácuo 24(2):98–103 (in Portuguese)

    CAS  Google Scholar 

  • Manabe T, Ohata M, Yoshizawa S, Nakajima D, Goto S, Uchida K, Yajima H (2007) Effect of carbonization temperature on the physicochemical structure of wood charcoal. Trans Mater Res Soc Jpn 32:1035–1038

    CAS  Google Scholar 

  • Manyà JJ, Laguarta S, Ortigosa MA, Manso JA (2014) Biochar from slow pyrolysis of two-phase olive mill waste: effect of pressure and peak temperature on its potential stability. Energ Fuel 28(5):3271–3280

    Article  Google Scholar 

  • McBeath AV, Smernik RJ, Schneider MPW, Schmidt MWI, Plant EL (2011) Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org Geochem 42(10):1194–1202

    Article  CAS  Google Scholar 

  • McGinnes EA, Kandeel SA, Szopa PS (1971) Some structural changes observed in the transformation of wood into charcoal. Wood Fiber Sci 3:77–83

    CAS  Google Scholar 

  • Meyers H, Jennings RF (1979) Charcoal ironmaking—a technical and economic review of Brazilian experience. SEAISI Quarterly 8(3):38–80

    CAS  Google Scholar 

  • Moore GR, Blankenhorn PR, Beall FC, Kline DE (1974) Some physical properties of birch carbonized in a nitrogen atmosphere. Wood Fiber Sci 6(3):193–199

    Google Scholar 

  • Moreira WS (1999) Relationships between physical and mechanical properties, chemical composition and anatomical characteristics of wood. Thesis, Universidade Federal de Viçosa. (in Portuguese)

  • Moutinho VHP (2013) Influence of dimensional variability and density of Eucalyptus sp. and Corymbia sp. in the charcoal quality. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”. (in Portuguese)

  • Nisgoski S, Muñiz GIB, Batista FRR, Mölleken RE (2014) Influence of carbonization temperature on the anatomical characteristics of Ocotea porosa (Nees & Mart. Ex Nees) L. Barroso. Wood Sci Technol 48(2):301–309

    Article  CAS  Google Scholar 

  • Numazawa S (2000) Contribution to the study of the slow pyrolysis of wood under pressure: determining optimum parameters of proceeds and characteristics of the products obtained. Thesis, Université de Technologie de Compiègne. (in French)

  • Ocaris ERY (2014) Characterization of the thermally treated endocarp of babassu coconut by Raman spectroscopy. Dissertation, Universidade Federal do Espírito Santo. (in Portuguese)

  • Oliveira LT, Almeida MR (1980) Evaluation of charcoal. In: Use of wood as bioenergy. Fundação Centro Tecnológico de Minas Gerais (CETEC) vol 1. pp 42–53. (in Portuguese)

  • Oliveira JB, Gomes PA, Almeida MR (1982) Preliminary studies on standardization of tests for the charcoal quality control. In: Charcoal: distillation, carbonization, properties and quality control. Fundação Centro Tecnológico de Minas Gerais (CETEC), vol 6. pp 8–38. (in Portuguese)

  • Pereira JCD, Sturion JA, Higa AR, Higa RCV, Shimizu JY (2000) Wood characteristics of some species of Eucalyptus planted in Brazil. Embrapa Florestas, Colombo, Documents 38. (in Portuguese)

  • Pereira BLC, Carneiro ADCO, Carvalho AMML, Trugilho PF, Melo ICNA, Oliveira AC (2013) Study of thermal degradation of Eucalyptus wood by thermogravimetry and calorimetry. Revista Árvore 37(3):567–576 (in Portuguese)

    Article  CAS  Google Scholar 

  • Prior J, Alvin KL (1986) Structural changes on charring woods of Dichrostachys and Salix from southern Africa: the effect of moisture content. IAWA Journal 7(3):243–250

    Article  Google Scholar 

  • Record SJ (1914) The mechanical properties of wood. John Wiley & Sons, New York

    Google Scholar 

  • Richard JR, Antal MJ Jr (1994) Thermogravimetric studies of charcoal formation from cellulose at elevated pressures. In: Bridgwater AV (ed) Advances in Thermochemical Biomass Conversion, 1st edn. Springer Science & Business Media, Dordrecht, pp 784–792

    Google Scholar 

  • Rousset P, Figueiredo C, de Souza M, Quirino W (2011) Pressure effect on the quality of Eucalyptus wood charcoal for the steel industry: a statistical analysis approach. Fuel Process Technol 92(10):1890–1897

    Article  CAS  Google Scholar 

  • Silva DA, Trugilho PF (2003) Dimensional behavior of the wood of sapwood and heartwood for analysis of image submitted in different temperatures. Cerne 9(1):56–65 (in Portuguese)

    Google Scholar 

  • Soares VC (2011) Thermal, chemical and physical behavior of wood and charcoal from Eucalyptus urophylla × Eucalyptus grandis at different ages. Thesis, Universidade Federal de Lavras. (in Portuguese)

  • Sun H, Hockaday WC, Masiello CA, Zygourakis K (2012) Multiple controls on the chemical and physical structure of biochars. Ind Eng Chem Res 51(9):3587–3597

    Article  CAS  Google Scholar 

  • Suopajärvi H, Pongrácz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sust Energ Rev 25:511–528

    Article  Google Scholar 

  • Syred C, Griffiths AJ, Syred N, Beedie D, James D (2006) A clean, efficient system for producing charcoal, heat and power (CHaP). Fuel 85(10):1566–1578

    Article  CAS  Google Scholar 

  • Trugilho PF, Silva DA (2001) Influence of final carbonization temperature in the physical and chemical characteristics of the jatoba (Himenea courbaril L) charcoal. Scientia Agraria 2(1–2):45–53 (in Portuguese)

    Google Scholar 

  • Trugilho PF, Lima JT, Mendes LM (1996) Influence of age on the physical-chemical and anatomical characteristics of the wood of Eucalyptus saligna. Cerne 2(1):94–111 (in Portuguese)

    Google Scholar 

  • Trugilho PF, Vital BR, Regazzi AJ, Gomide JL (1997) The use of canonical correlation analysis for identifying quality index of Eucalyptus wood for charcoal production. Revista Árvore 21(2):259–267 (in Portuguese)

    Google Scholar 

  • Velden MV, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energ 35(1):232–242

    Article  Google Scholar 

  • Vieira RS (2009) Mechanical properties of wood of Eucalyptus clones and charcoal produced between 350 °C and 900 °C. Thesis, Universidade Federal de Lavras

  • Wenzl HFJ (1970) The chemical technology of wood. Academic Press, New York

    Google Scholar 

  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg 47:268–276

    Article  CAS  Google Scholar 

  • **e X (2008) Production and characterization of carbon structures derived from wood. Dissertation, The University of Maine

Download references

Acknowledgments

The preparation of this review was supported by UFLA (Universidade Federal de Lavras, Lavras, Brazil), CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France) and IRD (Institut de Recherche pour le Développement, France). The authors would like to thank for their scientific, technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Assis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, M.R., Brancheriau, L., Napoli, A. et al. Factors affecting the mechanics of carbonized wood: literature review. Wood Sci Technol 50, 519–536 (2016). https://doi.org/10.1007/s00226-016-0812-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0812-6

Keywords

Navigation