Log in

Mechanical Stress by Spasticity Accelerates Fracture Healing After Spinal Cord Injury

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Accelerated fracture healing in patients with spinal cord injuries (SCI) is often encountered in clinical practice. However, there is no distinct evidence in the accelerated fracture healing, and the mechanisms of accelerated fracture healing in SCI are poorly understood. We aimed to determine whether SCI accelerated fracture healing in morphology and strength, to characterize the healing process with SCI, and to clarify the factors responsible for accelerated fracture healing. In total, 39 male Wistar rats were randomly divided into healthy control without intervention, SCI only, fracture with SCI, botulinum toxin (BTX) A-treated fracture with SCI, and propranolol-treated fracture with SCI groups. These rats were assessed with computed microtomography, histological, histomorphological, immunohistological, and biomechanical analyses. Both computed microtomography and histological analyses revealed the acceleration of a bony union in animals with SCI. The strength of the healed fractures after SCI recovered to the same level as that of intact bones after SCI, while the healed bones were weaker than the intact bones. Immunohistology revealed that SCI fracture healing was characterized by formation of callus with predominant intramembranous ossification and promoting endochondral ossification. The accelerated fracture healing after SCI was attenuated by BTX injection, but did not change by propranolol. We demonstrated that SCI accelerate fracture healing in both morphology and strength. The accelerated fracture healing with SCI may be due to predominant intramembranous ossification and promoting endochondral ossification. In addition, our results also suggest that muscle contraction by spasticity accelerates fracture healing after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489–500. doi:10.1080/10790268.2006.11753898

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harvey LA, Herbert RD (2002) Muscle stretching for treatment and prevention of contracture in people with spinal cord injury. Spinal Cord 40:1–9. doi:10.1038/sj.sc.3101241

    Article  CAS  PubMed  Google Scholar 

  3. Ranganathan K, Loder S, Agarwal S, Wong VW, Forsberg J, Davis TA, Wang S, James AW, Levi B (2015) Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am 97:1101–1111. doi:10.2106/JBJS.N.01056

    Article  PubMed  Google Scholar 

  4. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192. doi:10.1007/s00198-005-2028-8

    Article  PubMed  Google Scholar 

  5. Wang L, Yao X, **ao L, Tang X, Ding H, Zhang H, Yuan J (2014) The effects of spinal cord injury on bone healing in patients with femoral fractures. J Spinal Cord Med 37:414–419. doi:10.1179/2045772313Y.0000000155

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gifre L, Vidal J, Carrasco JL, Filella X, Ruiz-Gaspa S, Muxi A, Portell E, Monegai A, Guanabens N, Peris P (2015) Effect of recent spinal cord injury on wnt signaling antagonists (Sclerostin and Dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res 30:1014–1021. doi:10.1002/jbmr.2423

    Article  CAS  PubMed  Google Scholar 

  7. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    CAS  PubMed  Google Scholar 

  8. Ding WG, Liu JB, Wei ZX (2012) Spinal cord injury causes more damage to fracture healing of later phase than ovariectomy in young mice. Connect Tissue Res 53:142–148. doi:10.3109/03008207.2011.614365

    Article  CAS  PubMed  Google Scholar 

  9. Ding WG, Jiang SD, Zhang YH, Jiang LS, Dai LY (2011) Bone loss and impaired fracture healing in spinal cord injured mice. Osteoporos Int 22:507–515. doi:10.1007/s00198-010-1256-8

    Article  PubMed  Google Scholar 

  10. Medalha CC, Santos AL, Veronez Sde O, Fernandes KR, Magri AM, Renno AC (2016) Low level laser therapy accelerates bone healing in spinal cord injured rats. J Photochem Photobiol, B 159:179–185. doi:10.1016/j.jphotobiol.2016.03.041

    Article  CAS  Google Scholar 

  11. Miyamoto T (1987) An experimental study on fracture healing in paraplegic rats. Nihon Seikeigeka Gakkai Zasshi 61:1135–1145

    CAS  PubMed  Google Scholar 

  12. Wang L, Tang X, Zhang H, Yuan J, Ding H, Wei Y (2011) Elevated leptin expression in rat model of traumatic spinal cord injury and femoral fracture. J Spinal Cord Med 34:501–509. doi:10.1179/2045772311Y.0000000034

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aro H, Eerola E, Aho AJ, Penttinen R (1981) Healing of experimental fractures in the denervated limbs of the rat. Clin Orthop Relat Res. doi:10.1097/00003086-198103000-00034

    PubMed  Google Scholar 

  14. Aro H, Eerola E, Aho AJ (1985) Fracture healing in paraplegic rats. Acta Orthop Scand 56:228–232

    Article  CAS  PubMed  Google Scholar 

  15. Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, Steck R, Laschke MW, Wehner T, Bindl R, Recknagei S, Stuermer EK, Vollmar B, Wildemann B, Lienau J, Willie B, Peters A, Ignatius A, Pohlemann T, Claes L, Menger MD (2011) Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 49:591–599. doi:10.1016/j.bone.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Khurana SR, Garg DS (2014) Spasticity and the use of intrathecal baclofen in patients with spinal cord injury. Phys Med Rehabil Clin N Am 25:655–669. doi:10.1016/j.pmr.2014.04.008

    Article  PubMed  Google Scholar 

  17. Partida E, Mironets E, Hou S, Tom VJ (2016) Cardiovascular dysfunction following spinal cord injury. Neural Regen Res 11:189–194. doi:10.4103/1673-5374.177707

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qin W, Sun L, Cao J, Peng Y, Wu Y, Creasey G, Li J, Qin Y, Jarvis J, Beuman WA, Zaidi M, Cardozo C (2013) The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures. J Biol Chem 288:13511–13521. doi:10.1074/jbc.M113.454892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hao Y, Ma Y, Wang X, ** F, Ge S (2012) Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. J Orthop Res 30:574–580. doi:10.1002/jor.21553

    Article  CAS  PubMed  Google Scholar 

  20. Takeda S, Karsenty G (2008) Molecular bases of the sympathetic regulation of bone mass. Bone 42:837–840. doi:10.1016/j.bone.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Driessler F, Baldock PA (2010) Hypothalamic regulation of bone. J Mol Endocrinol 45:175–181. doi:10.1677/JME-10-0015

    Article  CAS  PubMed  Google Scholar 

  22. He JY, Jiang LS, Dai LY (2011) The roles of the sympathetic nervous system in osteoporotic diseases: a review of experimental and clinical studies. Ageing Res Rev 10:253–263. doi:10.1016/j.arr.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, Freitas FR, Wang CC, Nonaka KO, Oliveira R, Casarini DE, Zorn TM, Brum PC, Gouveia CH (2011) Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res 26:591–603. doi:10.1002/jbmr.243

    Article  CAS  PubMed  Google Scholar 

  24. McCann RM, Colleary G, Geddis C, Clarke GR, Jordan GR, Dickson GR, Marsh D (2008) Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res 26:384–393. doi:10.1002/jor.20505

    Article  PubMed  Google Scholar 

  25. Kilborn SH, Trudel G, Uhthoff H (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci 41:21–26

    CAS  PubMed  Google Scholar 

  26. Moriyama H, Yoshimura O, Sunahori H, Nitta H, Imakita H, Saka Y, Maejima H, Tobimatsu Y (2004) Progression and direction of contractures of knee joints following spinal cord injury in the rat. Tohoku J Exp Med 204:37–44. doi:10.1620/tjem.204.37

    Article  PubMed  Google Scholar 

  27. Moriyama H, Yoshimura O, Kawamata S, Takayanagi K, Kurose T, Kubota A, Hosoda M, Tobimatsu Y (2008) Alteration in articular cartilage of rat knee joints after spinal cord injury. Osteoarthr Cartil 16:392–398. doi:10.1016/j.joca.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  28. Moriyama H, Yoshimura O, Kawamata S, Takemoto H, Saka Y, Tobimatsu Y (2007) Alteration of knee joint connective tissues during contracture formation in spastic rats after an experimentally induced spinal cord injury. Connect Tissue Res 48:180–187. doi:10.1080/03008200701413512

    Article  CAS  PubMed  Google Scholar 

  29. Moriyama H, Tobimatsu Y, Ozawa J, Kito N, Tanaka R (2013) Amount of torque and duration of stretching affects correction of knee contracture in a rat model of spinal cord injury. Clin Orthop Relat Res 471:3626–3636. doi:10.1007/s11999-013-3196-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iwasawa H, Nomura M, Sakitani N, Watanabe K, Watanabe D, Moriyama H (2016) Stretching after heat but not after cold decreases contractures after spinal cord injury in rats. Clin Orthop Relat Res 474:2692–2701. doi:10.1007/s11999-016-5030-x

    Article  PubMed  Google Scholar 

  31. Bonnarens F, Einhorn T (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101. doi:10.1002/jor.1100020115

    Article  CAS  PubMed  Google Scholar 

  32. Pickett A, O’Keeffe R, Judge A, Dodd S (2008) The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon 52:455–464. doi:10.1016/j.toxicon.2008.06.021

    Article  CAS  PubMed  Google Scholar 

  33. Kondo A, Togari A (2003) In vivo stimulation of sympathetic nervous system modulates osteoblastic activity in mouse calvaria. Am J Physiol Endocrinol Metab 285:E661–E667. doi:10.1152/ajpendo.00026.2003

    Article  CAS  PubMed  Google Scholar 

  34. Minkowitz B, Boskey AL, Lane JM, Peariman HS, Vigorita VJ (1991) Effects of propranolol on bone metabolism in the rat. J Orthop Res 9:869–875. doi:10.1002/jor.1100090613

    Article  CAS  PubMed  Google Scholar 

  35. Bonnet N, Benhamou CL, Malaval L, Goncalves C, Vico L, Eder V, Pichon C, Courteix D (2008) Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol 217:819–827. doi:10.1002/jcp.21564

    Article  CAS  PubMed  Google Scholar 

  36. Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143. doi:10.1679/aohc.66.123

    Article  PubMed  Google Scholar 

  37. Allen HL, Wase A, Bear WT (1980) Indomethacin and aspirin: effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand 51:595–600. doi:10.3109/17453678008990848

    Article  CAS  PubMed  Google Scholar 

  38. Colnot C, Thompson Z, Miclau T, Werb Z, Heims JA (2003) Altered fracture repair in the absence of MMP9. Development 130:4123–4133. doi:10.1242/dev.00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van de Meent H, Hamers FP, Lankhorst AJ, Bulse MP, Joosten EA, Gispen WH (1996) New assessment techniques for evaluation of posttraumatic spinal cord function in the rat. J Neurotrauma 13:741–754. doi:10.1089/neu.1996.13.741

    Article  PubMed  Google Scholar 

  40. Jiang SD, Jiang LS, Dai LY (2007) Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: a 6-month longitudinal study in growing rats. Calcif Tissue Int 80:167–175. doi:10.1007/s00223-006-0085-4

    Article  CAS  PubMed  Google Scholar 

  41. Voor MJ, Brown EH, Xu Q, Waddell SW, Burden RL Jr, Burke DA, Magnuson DS (2012) Bone loss following spinal cord injury in a rat model. J Neurotrauma 29:1676–1682. doi:10.1089/neu.2011.2037

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ding WG, Yan WH, Wei ZX, Liu JB (2012) Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection. J Bone Miner Metab 30:400–407. doi:10.1007/s00774-011-0328-y

    Article  PubMed  Google Scholar 

  43. Jiang SD, Jiang LS, Dai LY (2006) Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 17:1552–1561. doi:10.1007/s00198-006-0165-3

    Article  PubMed  Google Scholar 

  44. Mark H, Nilsson A, Nannmark U, Rydevik B (2004) Effects of fracture fixation stability on ossification in healing fractures. Clin Orthop Relat Res. doi:10.1097/01.blo.0000116307.96693.b5

    PubMed  Google Scholar 

  45. **ng Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS (2010) Multiple roles for CCR2 during fracture healing. Dis Model Mech 3:451–458. doi:10.1242/dmm.003186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Daichi Watanabe and Kousuke Watanabe for animal care. We are also grateful to Daisuke Inoue, Akira Ito, and Hiroki Iijima for their support with mechanical testing. The synchrotron radiation experiments were performed at the BL20B2 of Spring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014A1681). This study was supported by Grant-in-Aid for Challenging Exploratory Research (25560260) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design on the study: HM. Acquisition of the data: NS, HI, and MN. Analysis and interpretation of the data: NS, YM, JO, and HM. Drafting the article: NS, HK, JO, and HM. Technical support: YM, HK, and JO. Critical revision of the article for important intellectual content: NS, HI, MN, YM, HK, JO, and HM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hideki Moriyama.

Ethics declarations

Conflict of interest

Naoyoshi Sakitani, Hiroyuki Iwasawa, Masato Nomura, Yasushi Miura, Hiroshi Kuroki, Junya Ozawa and Hideki Moriyama certifies that he or a member of his immediate family, has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with submitted article.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animal were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

223_2017_293_MOESM1_ESM.eps

Supplementary material 1 (EPS 1430 kb). Fig. 1 Study design with the assignment of animals to each group and the timeline of analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakitani, N., Iwasawa, H., Nomura, M. et al. Mechanical Stress by Spasticity Accelerates Fracture Healing After Spinal Cord Injury. Calcif Tissue Int 101, 384–395 (2017). https://doi.org/10.1007/s00223-017-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0293-0

Keywords

Navigation