Log in

Recent advances in immunodiagnostics based on biosensor technologies—from central laboratory to the point of care

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immunological methods are widely applied in medical diagnostics for the detection and quantification of a plethora of analytes. Associated analytical challenges usually require these assays to be performed in a central laboratory. During the last several years, however, the clinical demand for rapid immunodiagnostics to be performed in the immediate proximity of the patient has been constantly increasing. Biosensors constitute one of the key technologies enabling the necessary, yet challenging transition of immunodiagnostic tests from the central laboratory to the point of care. This review is intended to provide insights into the current state of this transition process with a focus on the role of biosensor-based systems. To begin with, an overview on standard immunodiagnostic tests presently employed in the central laboratory and at the point of care is given. The review then moves on to demonstrate how biosensor technologies are resha** this landscape. Single analyte as well as multiplexed immunosensors applicable to point of care scenarios are presented. A section on the areas of clinical application then creates the bridge to day-to-day diagnostic practice. Finally, the depicted developments are critically weighed and future perspectives discussed in order to give the reader a firm idea on the forthcoming trends to be expected in this diagnostic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ab:

Antibody

AFP:

Alpha-fetoprotein

AKI:

Acute kidney injury

ALP:

Alkaline phosphatase

BPE:

Bipolar electrode

BNP:

B-type natriuretic peptides

CA199:

Cancer antigen 19-9

CBP:

Calcium-binding protein

CDx:

Companion diagnostics

CEA:

Carcinoembryonic antigen

CK-MBmass :

Creatinine kinase MB

CLIA:

Clinical Laboratory Improvement Amendments

ECL:

Electrochemiluminescence

FRET:

Förster resonance energy transfer

GMR:

Giant magnetoresistance

HRP:

Horseradish peroxidase

IGFBP-7:

Insulin-like growth factor-binding protein 7

ICT:

Immunochromatographic test

IFN-γ:

Interferon-γ

IL-n:

Interleukin n

ISF:

Interstitial fluid

IVD:

In vitro diagnostics

KIM-1:

Kidney injury molecule-1

LFA:

Lateral flow immunoassays

LFD:

Lateral flow device

LLOD:

Lower limits of detection

MW:

Molecular weight

NGAL:

Neutrophil gelatinase-associated lipocalin

NWA:

Nanowell array

PMMA:

Poly(methyl methacrylate)

POCT:

Point-of-care testing

PSA:

Prostate-specific antigen

PTFE:

Polytetrafluoroethylene

SAW:

Surface acoustic wave

SPCE:

Screen-printed carbon electrode

SPE:

Screen-printed electrode

SPR:

Surface plasmon resonance

SWNT:

Single-wall carbon nanotube

TDM:

Therapeutic drug monitoring

TNF:

Tumor necrosis factor

TPA:

Tripropylamine

TSH:

Thyroid-stimulating hormone

TIMP-2:

Tissue inhibitor of metalloproteinases-2

References

  1. von Lode P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem. 2005;38(7):591–606. https://doi.org/10.1016/j.clinbiochem.2005.03.008.

    Article  CAS  Google Scholar 

  2. Luppa PB, Sokoll LJ, Chan DW. Immunosensors - principles and applications to clinical chemistry. Clin Chim Acta. 2001;314(1–2):1–26.

    Article  CAS  PubMed  Google Scholar 

  3. Luppa PB, Junker R. Point-of-care testing. Principles and clinical applications, vol 1. 1 edn. Berlin: Springer. 2018. https://doi.org/10.1007/978-3-662-54497-6.

    Google Scholar 

  4. Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv. 2016;34(3):139–60. https://doi.org/10.1016/j.biotechadv.2016.01.003.

    Article  PubMed  Google Scholar 

  5. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705. https://doi.org/10.1016/j.tibtech.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  6. Vashist SK. Point-of-care diagnostics: recent advances and trends. Biosensors. 2017;7(4). https://doi.org/10.3390/bios7040062.

    Article  PubMed Central  Google Scholar 

  7. Bietenbeck A, Junker R, Luppa PB. Central laboratory service and point-of-care testing in Germany. From conflicting notions to complementary understandings. Point of Care. 2015;14(1):1–11. https://doi.org/10.1097/poc.0000000000000043.

    Article  Google Scholar 

  8. Wang P, Kricka LJ. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin Chem. 2018;64(10):1439–52. https://doi.org/10.1373/clinchem.2018.287052.

    Article  CAS  PubMed  Google Scholar 

  9. Sakamoto S, Omagari K, Kita Y, Mochizuki Y, Naito Y, Kawata S, et al. Magnetically promoted rapid immunoreactions using functionalized fluorescent magnetic beads: a proof of principle. Clin Chem. 2014;60(4):610–20. https://doi.org/10.1373/clinchem.2013.211433.

    Article  CAS  PubMed  Google Scholar 

  10. Felix FS, Angnes L. Electrochemical immunosensors - a powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–8. https://doi.org/10.1016/j.bios.2017.11.029.

    Article  CAS  PubMed  Google Scholar 

  11. Ko Ferrigno P. Non-antibody protein-based biosensors. Essays Biochem. 2016;60(1):19–25. https://doi.org/10.1042/EBC20150003.

    Article  PubMed  Google Scholar 

  12. Li Z, Chen G-Y. Current conjugation methods for immunosensors. Nanomaterials (Basel). 2018;8(5). https://doi.org/10.3390/nano8050278.

    Article  PubMed Central  Google Scholar 

  13. Mao SY. Biotinylation of antibodies. Methods Mol Biol. 2010;588:49–52. https://doi.org/10.1007/978-1-59745-324-0_7.

    Article  CAS  PubMed  Google Scholar 

  14. Omi K, Ando T, Sakyu T, Shirakawa T, Uchida Y, Oka A, et al. Noncompetitive immunoassay detection system for haptens on the basis of antimetatype antibodies. Clin Chem. 2015;61(4):627–35. https://doi.org/10.1373/clinchem.2014.232728.

    Article  CAS  PubMed  Google Scholar 

  15. Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518(7537):27–9. https://doi.org/10.1038/518027a.

    Article  CAS  PubMed  Google Scholar 

  16. Bradbury ARM, Trinklein ND, Thie H, Wilkinson IC, Tandon AK, Anderson S, et al. When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. MAbs. 2018;10(4):539–46. https://doi.org/10.1080/19420862.2018.1445456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296(1):57–86.

    Article  CAS  PubMed  Google Scholar 

  18. Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013;4. https://doi.org/10.3389/fimmu.2013.0021710.

  19. Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. https://doi.org/10.1016/j.peptides.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Huang X, Zhu Y, Lv Z. A brief review of monoclonal antibody technology and its representative applications in immunoassays. J Immunoass Immunochem. 2018;39(4):351–64. https://doi.org/10.1080/15321819.2018.1515775.

    Article  CAS  Google Scholar 

  21. Glahn-Martinez B, Benito-Pena E, Salis F, Descalzo AB, Orellana G, Moreno-Bondi MC. Sensitive rapid fluorescence polarization immunoassay for free mycophenolic acid determination in human serum and plasma. Anal Chem. 2018;90(8):5459–65. https://doi.org/10.1021/acs.analchem.8b00780.

    Article  CAS  PubMed  Google Scholar 

  22. Baibich MN, Broto JM, Fert A, Vandau FN, Petroff F, Eitenne P, et al. Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys Rev Lett. 1988;61:2472–5.

    Article  CAS  PubMed  Google Scholar 

  23. Binasch G, Grunberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic-structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39:4828–30.

    Article  CAS  Google Scholar 

  24. Ismail AA. Identifying and reducing potentially wrong immunoassay results even when plausible and “not-unreasonable”. Adv Clin Chem. 2014;66:241–94.

    Article  CAS  PubMed  Google Scholar 

  25. Clerico A, Belloni L, Carrozza C, Correale M, Dittadi R, Dotti C, et al. A black swan in clinical laboratory practice: the analytical error due to interferences in immunoassay methods. Clin Chem Lab Med. 2018;56(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas L. Labor und Diagnose. 8 edn. New York: TH-Books, Frankfurt/Main. 2012.

  27. Klewitz T. Entwicklung eines quantitativen Lateral-Flow-Immunoassays zum Nachweis von Analyten in geringsten Konzentrationen. Inauguraldissertation. Hannover: Universität Hannover. 2005.

  28. Inverness m, BioStar OIA GC (2006) An enhanced optical immunoassay for the rapid detection of Neisseria gonorrhoeae from female endocervical swabs and male urine specimens. Product insert. Inverness Medical Innovations, vol Rev 02. Waltham, MA, USA.

  29. Miocevic O, Cole CR, Laughlin MJ, Buck RL, Slowey PD, Shirtcliff EA. Quantitative lateral flow assays for salivary biomarker assessment: a review. Front Public Health. 2017;5:133. https://doi.org/10.3389/fpubh.2017.00133.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burbelo PD, Gunti S, Keller JM, Morse CG, Deeks SG, Lionakis MS, et al. Ultrarapid measurement of diagnostic antibodies by magnetic capture of immune complexes. Sci Rep. 2017;7(1):3818. https://doi.org/10.1038/s41598-017-03786-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–20. https://doi.org/10.1128/JCM.00476-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30(6):887–98. https://doi.org/10.1016/j.trac.2011.01.019.

    Article  CAS  Google Scholar 

  33. Justino CI, Duarte AC, Rocha-Santos TA. Immunosensors in clinical laboratory diagnostics. Adv Clin Chem. 2016;73:65–108. https://doi.org/10.1016/bs.acc.2015.10.004.

    Article  CAS  PubMed  Google Scholar 

  34. Kokkinos C, Economou A, Prodromidis MI. Electrochemical immunosensors: critical survey of different architectures and transduction strategies. Trends Anal Chem. 2016;79:88–105. https://doi.org/10.1016/j.trac.2015.11.020.

    Article  CAS  Google Scholar 

  35. Cho IH, Lee J, Kim J, Kang MS, Paik JK, Ku S, et al. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors (Basel). 2018;18(1). https://doi.org/10.3390/s18010207.

    Article  PubMed Central  Google Scholar 

  36. Contreras-Naranjo JE, Aguilar O. Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors. 2019;9(1). https://doi.org/10.3390/bios9010015.

    Article  PubMed Central  Google Scholar 

  37. Damborsky P, Svitel J, Katrlik J. Optical biosensors. Essays Biochem. 2016;60(1):91–100. https://doi.org/10.1042/EBC20150010.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev. 2017;117(12):7910–63. https://doi.org/10.1021/acs.chemrev.7b00027.

    Article  CAS  PubMed  Google Scholar 

  39. Geissler D, Hildebrandt N. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Anal Bioanal Chem. 2016;408(17):4475–83. https://doi.org/10.1007/s00216-016-9434-y.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, **anyu Y, Wu J, Dong M, Zheng W, Sun J, et al. Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing. Anal Chem. 2017;89(10):5422–7. https://doi.org/10.1021/acs.analchem.7b00239.

    Article  CAS  PubMed  Google Scholar 

  41. Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2000;72(12):81R–9R.

    Article  CAS  PubMed  Google Scholar 

  42. Becker H, Gärtner C. Microfluidics-enabled diagnostic systems: markets, challenges, and examples. Methods Mol Biol. 2017;1547:3–21. https://doi.org/10.1007/978-1-4939-6734-6_1.

    Article  CAS  PubMed  Google Scholar 

  43. Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–28. https://doi.org/10.1016/j.bios.2018.05.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing - xPOCT. Trends Biotechnol. 2017;35(8):728–42. https://doi.org/10.1016/j.tibtech.2017.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munge BS, Stracensky T, Gamez K, DiBiase D, Rusling JF. Multiplex immunosensor arrays for electrochemical detection of cancer biomarker proteins. Electroanalysis. 2016;28(11):2644–58. https://doi.org/10.1002/elan.201600183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang J, Tang D, Niessner R, Chen G, Knopp D. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem. 2011;83(13):5407–14. https://doi.org/10.1021/ac200969w.

    Article  CAS  PubMed  Google Scholar 

  47. Wan Y, Deng W, Su Y, Zhu X, Peng C, Hu H, et al. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens Bioelectron. 2011;30(1):93–9. https://doi.org/10.1016/j.bios.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  48. Feng X, Gan N, Zhou J, Li T, Cao Y, Hu F, et al. A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru (bpy)32+−silica@poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers. Electrochim Acta. 2014;139:127–36. https://doi.org/10.1016/j.electacta.2014.07.008.

    Article  CAS  Google Scholar 

  49. Wu MS, Liu Z, Shi HW, Chen HY, Xu JJ. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal Chem. 2015;87(1):530–7. https://doi.org/10.1021/ac502989f.

    Article  CAS  PubMed  Google Scholar 

  50. Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83(17):6698–703. https://doi.org/10.1021/ac201292q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28(6):595–9. https://doi.org/10.1038/nbt.1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, et al. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21(4):533–47. https://doi.org/10.1177/2211068215589580.

    Article  CAS  PubMed  Google Scholar 

  53. Seo Y, Jeong S, Lee J, Choi HS, Kim J, Lee H. Innovations in biomedical nano-engineering: nanowell array biosensor. Nano Converg. 2018;5(1):9. https://doi.org/10.1186/s40580-018-0141-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Graham H, Chandler DJ, Dunbar SA. The genesis and evolution of bead-based multiplexing. Methods. 2019;158:2–11. https://doi.org/10.1016/j.ymeth.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  55. Agarwal R, Heinz T. Bedside hemoglobinometry in hemodialysis patients: lessons from point-of-care testing. ASAIO J. 2001;47(3):240–3.

    Article  CAS  PubMed  Google Scholar 

  56. Lehmann CA, Giacini JM. Point-of-care testing in the home and community environment: key ingredients for tomorrow’s community health. In: Price CP, St John A, Kricka LJ, editors. Point-of-care testing. 3rd ed. Washington: AACC Press; 2010.

    Google Scholar 

  57. Wurcel V, Perche O, Lesteven D, Williams DA, Schäfer B, Hopley C, et al. The value of companion diagnostics: overcoming access barriers to transform personalised health care into an affordable reality in Europe. Public Health Genomics. 2016;19(3):137–43.

    Article  PubMed  Google Scholar 

  58. Hafner G, Peetz D, Dati F. Patientennahe Bestimmung der Troponine zur diagnostik akuter koronarsyndrome. Near-patient testing of troponins for the diagnosis of acute coronary syndromes. J Lab Med. 2003;27(7–8):279–87. https://doi.org/10.1046/j.1439-0477.2003.03048.x.

    Article  CAS  Google Scholar 

  59. Collinson P. Detecting cardiac events - state-of-the-art. Ann Clin Biochem. 2015;52(Pt 6):702–4. https://doi.org/10.1177/0004563215596761.

    Article  CAS  PubMed  Google Scholar 

  60. Peetz D, Hafner G, Lackner KJ. Patientennahe Bestimmung natriuretischer peptide. Near-patient testing of natriuretic peptides. J Lab Med. 2005;29(4):219–28. https://doi.org/10.1515/jlm.2005.030.

    Article  CAS  Google Scholar 

  61. Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst. 2018;143(9):1970–96. https://doi.org/10.1039/c8an00307f.

    Article  CAS  PubMed  Google Scholar 

  62. Stürenburg E, Junker R. Point-of-care testing in microbiology: the advantages and disadvantages of immunochromatographic test strips. Dtsch Arztebl Int. 2009;106:48–54.

    PubMed  PubMed Central  Google Scholar 

  63. Reinert RR. Streptokokkenschnelltests. Rapid streptococcal antigen detection tests. J Lab Med. 2007;31(6):280–93. https://doi.org/10.1515/jlm.2007.046.

    Article  CAS  Google Scholar 

  64. Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines - a review. Anal Chim Acta. 2015;853:95–115. https://doi.org/10.1016/j.aca.2014.10.009.

    Article  CAS  PubMed  Google Scholar 

  65. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics. 2002;2(4):383–93. https://doi.org/10.1002/1615-9861(200204)2:4<383::AID-PROT383>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  66. Potuckova L, Franko F, Bambouskova M, Draber P. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J Immunol Methods. 2011;371(1–2):38–47. https://doi.org/10.1016/j.jim.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  67. Duking P, Achtzehn S, Holmberg HC, Sperlich B. Integrated framework of load monitoring by a combination of smartphone applications, wearables and point-of-care testing provides feedback that allows individual responsive adjustments to activities of daily living. Sensors (Basel). 2018;18(5). https://doi.org/10.3390/s18051632.

    Article  PubMed Central  Google Scholar 

  68. Kiang TKL, Ranamukhaarachchi SA, Ensom MHH. Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology. Pharmaceutics. 2017;9(4). https://doi.org/10.3390/pharmaceutics9040043.

    Article  PubMed Central  Google Scholar 

  69. Singh V, Krishnan S. Electrochemical and surface plasmon insulin assays on clinical samples. Analyst. 2018;143(7):1544–55. https://doi.org/10.1039/c7an01872j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wood F, Brookes-Howell L, Hood K, Cooper L, Verheij T, Goossens H, et al. A multi-country qualitative study of clinicians’ and patients’ views on point of care tests for lower respiratory tract infection. Fam Pract. 2011;28(6):661–9. https://doi.org/10.1093/fampra/cmr031.

    Article  PubMed  Google Scholar 

  71. Dunn SG, Visnich MR. Home-based point-of-care testing. In: Kost GJ, editor. Princinples and practice of point-of-care testing. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 376–90.

    Google Scholar 

  72. Siebenhofer A, Jeitler K, Horvath K, Habacher W, Schmidt L, Semlitsch T. Self-management of oral anticoagulation. Dtsch Arztebl Int. 2014;111(6):83–91. https://doi.org/10.3238/arztebl.2014.0083.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robinson JE, Wakelin M, Ellis JE. Increased pregnancy rate with use of the Clearblue easy fertility monitor. Fertil Steril. 2007;87(2):329–34. https://doi.org/10.1016/j.fertnstert.2006.05.054.

    Article  PubMed  Google Scholar 

  74. Friedewald S, Finke E-J, Dobler G. Patientennahe Diagnostik in Krisensituationen. J Lab Med. 2006;30:211–8.

    Google Scholar 

  75. Kost GJ, Ferguson WJ, Hoe J, Truong AT, Banpavichit A, Kongpila S. The Ebola spatial care path: accelerating point-of-care diagnosis, decision making, and community resilience in outbreaks. Am J Disaster Med. 2015;10(2):121–43. https://doi.org/10.5055/ajdm.2015.0196.

    Article  PubMed  Google Scholar 

  76. Price CP, St. John A. Innovation in healthcare. The challenge for laboratory medicine. Clin Chim Acta. 2014;427:71–8.

    Article  CAS  PubMed  Google Scholar 

  77. Deutsches Institut für Normung. DIN 58964:2015-09 - quality assurance of POCT results. Assessment criteria for comparison measurement and implementation. Berlin: Beuth Verlag. 2015.

  78. Zhang WR, Parikh CR (2019) Biomarkers of acute and chronic kidney disease. Annu Rev Physiol 81:309-333. doi: https://doi.org/10.1146/annurev-physiol-020518-114605. (Feb 10):309-333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the European Commission (NANODEM, #318372) and the Bundesministerium für Bildung und Forschung (Q-Flow, #13N13867 and KAREL, #13GW0154D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Luppa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection New Developments in Biosensors with guest editors Francesco Baldini and Maria Minunni.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poschenrieder, A., Thaler, M., Junker, R. et al. Recent advances in immunodiagnostics based on biosensor technologies—from central laboratory to the point of care. Anal Bioanal Chem 411, 7607–7621 (2019). https://doi.org/10.1007/s00216-019-01915-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01915-x

Keywords

Navigation